-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_emotion_detector_model.py
82 lines (66 loc) · 3.49 KB
/
train_emotion_detector_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
file_path = 'models\emodet.h5' # Replace with the correct path
if os.path.exists(file_path):
print("A trained model already exists.")
else:
tf.keras.preprocessing.image.load_img('data/fer2013/train/Angry/1003.jpg')
training_generator = ImageDataGenerator(rescale=1./255,
rotation_range=7,
horizontal_flip=True,
zoom_range=0.2)
train_dataset = training_generator.flow_from_directory('data/fer2013/train',
target_size = (48, 48),
batch_size = 16,
class_mode = 'categorical',
shuffle = True)
test_generator = ImageDataGenerator(rescale=1./255)
test_dataset = test_generator.flow_from_directory('data/fer2013/validation',
target_size = (48, 48),
batch_size = 1,
class_mode = 'categorical',
shuffle = False)
num_detectors = 32
num_classes = 7
width, height = 48, 48
epochs = 70
network = Sequential()
network.add(Conv2D(num_detectors, (3,3), activation='relu', padding = 'same', input_shape = (width, height, 3)))
network.add(BatchNormalization())
network.add(Conv2D(num_detectors, (3,3), activation='relu', padding = 'same'))
network.add(BatchNormalization())
network.add(MaxPooling2D(pool_size=(2,2)))
network.add(Dropout(0.2))
network.add(Conv2D(2*num_detectors, (3,3), activation='relu', padding = 'same'))
network.add(BatchNormalization())
network.add(Conv2D(2*num_detectors, (3,3), activation='relu', padding = 'same'))
network.add(BatchNormalization())
network.add(MaxPooling2D(pool_size=(2,2)))
network.add(Dropout(0.2))
network.add(Conv2D(2*2*num_detectors, (3,3), activation='relu', padding = 'same'))
network.add(BatchNormalization())
network.add(Conv2D(2*2*num_detectors, (3,3), activation='relu', padding = 'same'))
network.add(BatchNormalization())
network.add(MaxPooling2D(pool_size=(2,2)))
network.add(Dropout(0.2))
network.add(Conv2D(2*2*2*num_detectors, (3,3), activation='relu', padding = 'same'))
network.add(BatchNormalization())
network.add(Conv2D(2*2*2*num_detectors, (3,3), activation='relu', padding = 'same'))
network.add(BatchNormalization())
network.add(MaxPooling2D(pool_size=(2,2)))
network.add(Dropout(0.2))
network.add(Flatten())
network.add(Dense(2 * num_detectors, activation='relu'))
network.add(BatchNormalization())
network.add(Dropout(0.2))
network.add(Dense(2 * num_detectors, activation='relu'))
network.add(BatchNormalization())
network.add(Dropout(0.2))
network.add(Dense(num_classes, activation='softmax'))
network.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])
network.fit(train_dataset, epochs=epochs)
network.save('models\emodet.h5')
print("Finished training.")