Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

gh-69639: add mixed-mode rules for complex arithmetic (float case) #4

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions Doc/library/cmath.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,17 +24,17 @@ the function is then applied to the result of the conversion.
imaginary axis we look at the sign of the real part.

For example, the :func:`cmath.sqrt` function has a branch cut along the
negative real axis. An argument of ``complex(-2.0, -0.0)`` is treated as
negative real axis. An argument of ``-2-0j`` is treated as
though it lies *below* the branch cut, and so gives a result on the negative
imaginary axis::

>>> cmath.sqrt(complex(-2.0, -0.0))
>>> cmath.sqrt(-2-0j)
-1.4142135623730951j

But an argument of ``complex(-2.0, 0.0)`` is treated as though it lies above
But an argument of ``-2+0j`` is treated as though it lies above
the branch cut::

>>> cmath.sqrt(complex(-2.0, 0.0))
>>> cmath.sqrt(-2+0j)
1.4142135623730951j


Expand Down Expand Up @@ -63,9 +63,9 @@ rectangular coordinates to polar coordinates and back.
along the negative real axis. The sign of the result is the same as the
sign of ``x.imag``, even when ``x.imag`` is zero::

>>> phase(complex(-1.0, 0.0))
>>> phase(-1+0j)
3.141592653589793
>>> phase(complex(-1.0, -0.0))
>>> phase(-1-0j)
-3.141592653589793


Expand Down
2 changes: 2 additions & 0 deletions Include/internal/pycore_floatobject.h
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,8 @@ extern PyObject* _Py_string_to_number_with_underscores(

extern double _Py_parse_inf_or_nan(const char *p, char **endptr);

extern int _Py_convert_to_double(PyObject **v, double *dbl);


#ifdef __cplusplus
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Implement mixed-mode arithmetic rules combining real and complex variables
as specified by C standards since C99. Patch by Sergey B Kirpichev.
164 changes: 125 additions & 39 deletions Objects/complexobject.c
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
#include "Python.h"
#include "pycore_call.h" // _PyObject_CallNoArgs()
#include "pycore_complexobject.h" // _PyComplex_FormatAdvancedWriter()
#include "pycore_floatobject.h" // _Py_convert_to_double()
#include "pycore_long.h" // _PyLong_GetZero()
#include "pycore_object.h" // _PyObject_Init()
#include "pycore_pymath.h" // _Py_ADJUST_ERANGE2()
Expand Down Expand Up @@ -481,75 +482,160 @@ complex_hash(PyComplexObject *v)
return (obj)

static int
to_complex(PyObject **pobj, Py_complex *pc)
to_float(PyObject **pobj, double *dbl)
{
PyObject *obj = *pobj;

pc->real = pc->imag = 0.0;
if (PyLong_Check(obj)) {
pc->real = PyLong_AsDouble(obj);
if (pc->real == -1.0 && PyErr_Occurred()) {
*pobj = NULL;
return -1;
}
return 0;
}
if (PyFloat_Check(obj)) {
pc->real = PyFloat_AsDouble(obj);
return 0;
*dbl = PyFloat_AS_DOUBLE(obj);
}
else if (_Py_convert_to_double(pobj, dbl) < 0) {
return -1;
}
*pobj = Py_NewRef(Py_NotImplemented);
return -1;
return 0;
}

static int
to_complex(PyObject **pobj, Py_complex *pc)
{
pc->imag = 0.0;
return to_float(pobj, &(pc->real));
}

/* Complex arithmetic rules implement special mixed-mode case: combining
pure-real (float's or int's) value and complex value performed directly, not
by first coercing the real value to complex.

Lets consider the addition as an example, assuming that int's are implicitly
converted to float's. We have following rules (up to variants with changed
order of operands):

complex(x, y) + complex(u, v) = complex(x + u, y + v) (1)
float(x) + complex(u, v) = complex(x + u, v) (2)

Similar rules are implemented for subtraction, multiplication and division.
See C11's Annex G, sections G.5.1 and G.5.2.
*/

static PyObject *
complex_add(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
result = _Py_c_sum(a, b);
return PyComplex_FromCComplex(result);
if (PyComplex_Check(w)) {
PyObject *tmp = v;
v = w;
w = tmp;
}

Py_complex a = ((PyComplexObject *)(v))->cval;
double b;

if (PyComplex_Check(w)) {
Py_complex b = ((PyComplexObject *)(w))->cval;
a = _Py_c_sum(a, b);
}
else if (to_float(&w, &b) < 0) {
return w;
}
else {
a.real += b;
}

return PyComplex_FromCComplex(a);
}

static PyObject *
complex_sub(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
result = _Py_c_diff(a, b);
return PyComplex_FromCComplex(result);
Py_complex a;

if (PyComplex_Check(w)) {
Py_complex b = ((PyComplexObject *)(w))->cval;

if (PyComplex_Check(v)) {
a = ((PyComplexObject *)(v))->cval;
errno = 0;
a = _Py_c_diff(a, b);
}
else if (to_float(&v, &a.real) < 0) {
return v;
}
else {
a = (Py_complex) {a.real, -b.imag};
a.real -= b.real;
}
}
else {
a = ((PyComplexObject *)(v))->cval;
double b;

if (to_float(&w, &b) < 0) {
return w;
}
a.real -= b;
}

return PyComplex_FromCComplex(a);
}

static PyObject *
complex_mul(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
result = _Py_c_prod(a, b);
return PyComplex_FromCComplex(result);
if (PyComplex_Check(w)) {
PyObject *tmp = v;
v = w;
w = tmp;
}

Py_complex a = ((PyComplexObject *)(v))->cval;
double b;

if (PyComplex_Check(w)) {
Py_complex b = ((PyComplexObject *)(w))->cval;
a = _Py_c_prod(a, b);
}
else if (to_float(&w, &b) < 0) {
return w;
}
else {
a.real *= b;
a.imag *= b;
}

return PyComplex_FromCComplex(a);
}

static PyObject *
complex_div(PyObject *v, PyObject *w)
{
Py_complex quot;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
errno = 0;
quot = _Py_c_quot(a, b);
Py_complex a;

if (PyComplex_Check(w)) {
Py_complex b = ((PyComplexObject *)(w))->cval;
TO_COMPLEX(v, a);
errno = 0;
a = _Py_c_quot(a, b);
}
else {
double b;

if (to_float(&w, &b) < 0) {
return w;
}
if (b) {
a = ((PyComplexObject *)(v))->cval;
a.real /= b;
a.imag /= b;
}
else {
errno = EDOM;
}
}

if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError, "division by zero");
return NULL;
}
return PyComplex_FromCComplex(quot);
return PyComplex_FromCComplex(a);
}

static PyObject *
Expand Down
6 changes: 3 additions & 3 deletions Objects/floatobject.c
Original file line number Diff line number Diff line change
Expand Up @@ -309,13 +309,13 @@ PyFloat_AsDouble(PyObject *op)
#define CONVERT_TO_DOUBLE(obj, dbl) \
if (PyFloat_Check(obj)) \
dbl = PyFloat_AS_DOUBLE(obj); \
else if (convert_to_double(&(obj), &(dbl)) < 0) \
else if (_Py_convert_to_double(&(obj), &(dbl)) < 0) \
return obj;

/* Methods */

static int
convert_to_double(PyObject **v, double *dbl)
int
_Py_convert_to_double(PyObject **v, double *dbl)
{
PyObject *obj = *v;

Expand Down
2 changes: 0 additions & 2 deletions Python/bltinmodule.c
Original file line number Diff line number Diff line change
Expand Up @@ -2742,7 +2742,6 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
double value = PyLong_AsDouble(item);
if (value != -1.0 || !PyErr_Occurred()) {
re_sum = cs_add(re_sum, value);
im_sum.hi += 0.0;
Py_DECREF(item);
continue;
}
Expand All @@ -2755,7 +2754,6 @@ builtin_sum_impl(PyObject *module, PyObject *iterable, PyObject *start)
if (PyFloat_Check(item)) {
double value = PyFloat_AS_DOUBLE(item);
re_sum = cs_add(re_sum, value);
im_sum.hi += 0.0;
_Py_DECREF_SPECIALIZED(item, _PyFloat_ExactDealloc);
continue;
}
Expand Down
Loading