-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy path_fcn.py
163 lines (133 loc) · 5.5 KB
/
_fcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
__author__ = "James Large, Withington"
from tensorflow import keras
from sktime_dl.regression._regressor import BaseDeepRegressor
from sktime_dl.networks._fcn import FCNNetwork
from sktime_dl.utils import check_and_clean_data, \
check_and_clean_validation_data
class FCNRegressor(BaseDeepRegressor, FCNNetwork):
"""Fully convolutional neural network (FCN).
Adapted from the implementation from Fawaz et. al
https://github.com/hfawaz/dl-4-tsc/blob/master/classifiers/fcn.py
Network originally defined in:
@inproceedings{wang2017time, title={Time series classification from
scratch with deep neural networks: A strong baseline}, author={Wang,
Zhiguang and Yan, Weizhong and Oates, Tim}, booktitle={2017
International joint conference on neural networks (IJCNN)}, pages={
1578--1585}, year={2017}, organization={IEEE} }
:param nb_epochs: int, the number of epochs to train the model
:param batch_size: int, specifying the length of the 1D convolution
window
:param callbacks: list of tf.keras.callbacks.Callback objects
:param random_state: int, seed to any needed random actions
:param verbose: boolean, whether to output extra information
:param model_name: string, the name of this model for printing and
file writing purposes
:param model_save_directory: string, if not None; location to save
the trained keras model in hdf5 format
"""
def __init__(
self,
nb_epochs=2000,
batch_size=16,
callbacks=None,
random_state=0,
verbose=False,
model_name="fcn_regressor",
model_save_directory=None,
):
super(FCNRegressor, self).__init__(
model_name=model_name, model_save_directory=model_save_directory
)
self.verbose = verbose
self._is_fitted = False
# calced in fit
self.input_shape = None
self.history = None
# predefined
self.nb_epochs = nb_epochs
self.batch_size = batch_size
self.callbacks = callbacks
self.random_state = random_state
self.verbose = verbose
self._is_fitted = False
def build_model(self, input_shape, **kwargs):
"""
Construct a compiled, un-trained, keras model that is ready for
training
----------
input_shape : tuple
The shape of the data fed into the input layer
Returns
-------
output : a compiled Keras Model
"""
input_layer, output_layer = self.build_network(input_shape, **kwargs)
output_layer = keras.layers.Dense(units=1)(output_layer)
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
model.compile(
loss="mean_squared_error",
optimizer=keras.optimizers.Adam(),
metrics=["mean_squared_error"],
)
# if user hasn't provided a custom ReduceLROnPlateau via init
# already, add the default from literature
if self.callbacks is None:
self.callbacks = []
if not any(
isinstance(callback, keras.callbacks.ReduceLROnPlateau)
for callback in self.callbacks
):
reduce_lr = keras.callbacks.ReduceLROnPlateau(
monitor="loss", factor=0.5, patience=50, min_lr=0.0001
)
self.callbacks.append(reduce_lr)
return model
def fit(self, X, y, input_checks=True, validation_X=None,
validation_y=None, **kwargs):
"""
Fit the regressor on the training set (X, y)
----------
X : a nested pd.Dataframe, or (if input_checks=False) array-like of
shape = (n_instances, series_length, n_dimensions)
The training input samples. If a 2D array-like is passed,
n_dimensions is assumed to be 1.
y : array-like, shape = [n_instances]
The training data class labels.
input_checks : boolean
whether to check the X and y parameters
validation_X : a nested pd.Dataframe, or array-like of shape =
(n_instances, series_length, n_dimensions)
The validation samples. If a 2D array-like is passed,
n_dimensions is assumed to be 1.
Unless strictly defined by the user via callbacks (such as
EarlyStopping), the presence or state of the validation
data does not alter training in any way. Predictions at each epoch
are stored in the model's fit history.
validation_y : array-like, shape = [n_instances]
The validation class labels.
Returns
-------
self : object
"""
X = check_and_clean_data(X, y, input_checks=input_checks)
validation_data = \
check_and_clean_validation_data(validation_X, validation_y)
# ignore the number of instances, X.shape[0],
# just want the shape of each instance
self.input_shape = X.shape[1:]
self.batch_size = int(max(1, min(X.shape[0] / 10, self.batch_size)))
self.model = self.build_model(self.input_shape)
if self.verbose:
self.model.summary()
self.history = self.model.fit(
X,
y,
batch_size=self.batch_size,
epochs=self.nb_epochs,
verbose=self.verbose,
callbacks=self.callbacks,
validation_data=validation_data,
)
self.save_trained_model()
self._is_fitted = True
return self