-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobNet.py
51 lines (41 loc) · 2 KB
/
mobNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import keras
import matplotlib.pyplot as plt
from keras.layers import Dense,GlobalAveragePooling2D
from keras.applications import MobileNet
from keras.preprocessing import image
from keras.applications.mobilenet import preprocess_input
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.optimizers import Adam
from keras.models import model_from_json
NAME = "landmarks_CNN"
base_model=MobileNet(weights='imagenet',include_top=False)
preModel=base_model.output
preModel=GlobalAveragePooling2D()(preModel)
preModel=Dense(1024,activation='relu')(preModel) #dense layer 1
preModel=Dense(1024,activation='relu')(preModel) #dense layer 2
preModel=Dense(512,activation='relu')(preModel)
preModel=Dense(256,activation='relu')(preModel)
predictions=Dense(10,activation='softmax')(preModel)
model=Model(inputs=base_model.input,outputs=predictions)
for each in model.layers[:15]:
each.trainable=False
for each in model.layers[15:]:
each.trainable=True
training=ImageDataGenerator(preprocessing_function=preprocess_input,rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True)
train_generator=training.flow_from_directory('Data/train/',
target_size=(224,224),
color_mode='rgb',
batch_size=32,
class_mode='categorical',
shuffle=True)
model.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accuracy'])
step_size_train=train_generator.n//train_generator.batch_size
model.fit_generator(generator=train_generator,
steps_per_epoch=step_size_train,
epochs=3)
model_json = model.to_json()
with open("vgg16model_3.json", "w") as json_file:
json_file.write(model_json)
model.save_weights("vgg16model_3.h5")