-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest_tokenizer.py
52 lines (42 loc) · 2.15 KB
/
test_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from torch.utils.data import DataLoader, Dataset
import json
import os
import torch
from utils import get_tokenizer
from utils.tokenization import BasicTokenizer
import numpy as np
from random import choice
from transformers import BertTokenizer
tokenizer = get_tokenizer('pre_trained_bert//chinese-bert-wwm-ext/vocab.txt')
basicTokenizer = BasicTokenizer(do_lower_case=False)
from transformers import BertTokenizer
class ZhTokenizer:
def __init__(self):
self.tokenizer = BertTokenizer.from_pretrained('pre_trained_bert/chinese-bert-wwm-ext/vocab.txt')
self.vocab2id = self.tokenizer.vocab
def tokenize(self, text):
tokens = self.tokenizer.tokenize(text)
return_tokens = ["[CLS]"]
for token in tokens:
return_tokens.append(token)
return_tokens.append("[unused1]")
return_tokens += ["[SEP]"]
return return_tokens
def encode(self, text):
return_tokens = self.tokenize(text)
input_ids = [int(self.vocab2id.get(token, 100)) for token in return_tokens]
attention_mask = [1] * len(input_ids)
return input_ids, attention_mask
tokenizer2 = ZhTokenizer()
text = {'text': '392013年剧场第3《陆贞传奇》全国网收视率(含央视)', 'triple_list': [['陆贞传奇', '上映时间', '2013年']]}
text = {'text': '大连市117中学学校系金州区教育局下属的一所公办普通中学,位于金州区东山路,占地面积24478㎡2,其中教学楼面积7519㎡',
'triple_list': [['大连市117中学', '占地面积', '24478㎡']]}
text = {'text': '随便更一下最近喜欢的歌手,没找到组织家入レオ - Shine5月16日发行的第二首原创单曲,作为日剧青蛙公主的片尾曲附中日字幕的MV',
'triple_list': [['青蛙公主', '主题曲', 'Shine']]}
print(tokenizer.tokenize(text["text"]))
print(tokenizer.tokenize(text["triple_list"][0][0]))
print(tokenizer.tokenize(text["triple_list"][0][2]))
print("=" * 100)
print(tokenizer2.tokenize(text["text"]))
print(tokenizer2.tokenize(text["triple_list"][0][0]))
print(tokenizer2.tokenize(text["triple_list"][0][2]))