-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
482 lines (451 loc) · 24.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
from __future__ import print_function
import argparse
import random, timeit
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
import os, sys
import models
import critics
DEF_DATAROOT = '/parent/path/to/datasets'
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True, help='cifar10 | svhn ')
parser.add_argument('--dataroot', default='', help='path to dataset')
parser.add_argument('--outputdir', default='tmp', help='Where to store samples and models')
parser.add_argument('--manualSeed', type=int, default=0, help='Optionally specify to fix seed')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imageSize', type=int, default=32, help='the height / width of the input image to network')
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--niter', type=int, default=350, help='number of epochs to train for')
parser.add_argument('--lrD', type=float, default=2e-4, help='learning rate for Critic')
parser.add_argument('--lrDcut', type=int, default=0, help='cut lrD in half every X epochs')
parser.add_argument('--lrG', type=float, default=2e-4, help='learning rate for Generator')
parser.add_argument('--lrGcut', type=int, default=0, help='cut lrG in half every X epochs')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for adam. default=0.5')
parser.add_argument('--cuda' , action='store_true', help='enables cuda')
parser.add_argument('--ngpu' , type=int, default=1, help='number of GPUs to use')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--wdecay', type=float, default=1e-6, help='wdecay value for Phi')
parser.add_argument('--wdecayV', type=float, default=0.001, help='wdecay value for V')
parser.add_argument('--wdecayS', type=float, default=1e-6, help='wdecay value for S')
parser.add_argument('--n_c', type=int, default=1, help='number of D iters per each G iter')
parser.add_argument('--hiStart_n_c' , action='store_true', help='do many D iters at start')
parser.add_argument('--model_G', default='dcgan', help='models/submodule to use for G')
parser.add_argument('--model_D', default='openaistyle', help='models/submodule to use for D')
parser.add_argument('--G_extra_layers', type=int, default=2, help='Number of extra layers on gen and disc')
parser.add_argument('--D_extra_layers', type=int, default=0, help='Number of extra layers on gen and disc')
parser.add_argument('--normalization_D', default='none', help='none / batchnorm / layernorm / instancenorm')
parser.add_argument('--rmsprop', action='store_true', help='Whether to use rmsprop')
parser.add_argument('--sgd', action='store_true', help='Whether to use SGD')
parser.add_argument('--labeledSamples', type=int, default=4000, help='Add semi-sup learning objective, if >0')
parser.add_argument('--lambdaXE_D', type=float, default=1.5, help='Weight for XE term for D')
parser.add_argument('--conditionalG', action='store_true', help='Whether to condition G on labels')
parser.add_argument('--lambdaXE_G', type=float, default=0.1, help='Weight for XE term for G')
parser.add_argument('--rhoFisher', type=float, default=5e-8, help='penalty weight & lrate for fisher constr (E_mu[f^2] -1)**2')
parser.add_argument('--rhoSobolev', type=float, default=2e-8, help='penalty weight & lrate for sobolev constr')
parser.add_argument('--lambdaGP', type=float, default=10.0, help='WGAN-GP constraint weight factor.')
parser.add_argument('--SSL_critic_type', default='Kp1', help='which critic for SSL: K, Kp1 or Kp1_plogp')
parser.add_argument('--f_component_Fisher', default='', help='which part of critic to apply fisher constraint: f, fpos, fneg.')
parser.add_argument('--f_component_Sobolev', default='', help='which part of critic to apply sobolev constraint: f, fpos, fneg.')
parser.add_argument('--f_component_GP', default='', help='which part of critic to apply WGAN-GP constraint (on interpolated mu): f, fpos, fneg.')
opt = parser.parse_args()
print(str(opt).replace(', ', '\n'))
os.system('mkdir {0}'.format(opt.outputdir))
opt.manualSeed = random.randint(1, 10000) if not opt.manualSeed else opt.manualSeed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
critic = {'K': critics.K(), 'Kp1': critics.Kp1(), 'Kp1_plogp': critics.Kp1_plogp()}[opt.SSL_critic_type]
assert opt.f_component_Fisher or opt.f_component_Sobolev or opt.f_component_GP, "We need some constraint on the critic, dont we?"
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
if opt.cuda:
print('CUDNN OK? %s' % (torch.backends.cudnn.is_acceptable(torch.cuda.FloatTensor(1))))
print('CUDNN-VERSION= %d' % (torch.backends.cudnn.version()))
torch.backends.cudnn.benchmark = True
if not opt.dataroot:
opt.dataroot = os.path.join(DEF_DATAROOT, opt.dataset)
# DEFAULTS: dataroot, transform
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.CenterCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
if opt.dataset == 'cifar10':
# override transform
transform = transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])
dataset = dset.CIFAR10(root=opt.dataroot, download=False, transform=transform)
val_dataset = dset.CIFAR10(root=opt.dataroot, train=False, transform=transform)
if opt.labeledSamples:
n_classes = 10
max_labeledSamples = 50e3
elif opt.dataset == 'svhn':
transform = transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])
ttransform = lambda x: x % 10 # 1-indexed, 10=0
dataset = dset.SVHN(root=opt.dataroot, download=False, transform=transform, target_transform = ttransform)
val_dataset = dset.SVHN(root=opt.dataroot, split='test', transform=transform, target_transform = ttransform)
if opt.labeledSamples:
n_classes = 10
max_labeledSamples = 10 * 4659
else:
raise Exception('Unknown dataset: ' + opt.dataset)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
shuffle=True, num_workers=int(opt.workers), drop_last=True)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=10*opt.batchSize,
shuffle=True, num_workers=int(opt.workers), drop_last=False) # only fw pass
nc = 3
if opt.conditionalG:
assert opt.labeledSamples, "Need labeledSamples for conditionalG setting"
nz_tot = opt.nz + n_classes
else:
nz_tot = opt.nz
if opt.labeledSamples:
# assemble class-Balanced subset with labels.
assert opt.labeledSamples % n_classes == 0 and opt.labeledSamples <= max_labeledSamples
nSamp = [0] * n_classes
#lab = [ [s for s in dataset if s[1]==y][:opt.labeledSamples] for y in range(10)] # too slow
lab_x = torch.FloatTensor(opt.labeledSamples, nc, opt.imageSize, opt.imageSize)
lab_y = torch.ByteTensor(opt.labeledSamples)
for s in dataset:
y = int(s[1]) # squeeze to float
if nSamp[y] < opt.labeledSamples / n_classes:
ix = sum(nSamp)
lab_x[ix].copy_(s[0])
lab_y[ix] = y
nSamp[y] += 1
if sum(nSamp) == opt.labeledSamples:
break
assert sum(nSamp) == opt.labeledSamples # if not enough to fill lab_x, lab_y, this would be bad
lab_dataloader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(lab_x, lab_y),
batch_size=opt.batchSize, shuffle=True, drop_last=True)
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1 or classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
__import__('models.{}'.format(opt.model_G))
model_G = getattr(models, opt.model_G).G
netG = model_G(opt.imageSize, nz_tot, nc, opt.ngf, opt.ngpu, opt.G_extra_layers)
netG.apply(weights_init)
if opt.netG != '': # load checkpoint if needed
netG.load_state_dict(torch.load(opt.netG))
print(netG)
__import__('models.{}'.format(opt.model_D))
model_D = getattr(models, opt.model_D).D
netD = model_D(opt.imageSize, nz_tot, nc, opt.ndf, opt.ngpu, opt.D_extra_layers, n_classes, opt.normalization_D)
netD.apply(weights_init)
if opt.netD != '':
netD.load_state_dict(torch.load(opt.netD))
print(netD)
x_lab = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize)
x_unl = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize)
cpulabels = torch.LongTensor(opt.batchSize)
fakelabels = torch.LongTensor(opt.batchSize)
cpunoise = torch.FloatTensor(opt.batchSize, nz_tot, 1, 1)
# DEFINE fill_noise() and fixed_noise
if opt.conditionalG:
def code_y_onehot(z, y):
""" z noisevector (bs x nz+n_classes x 1 x1):
code the y class labels [0,n_classes-1] at end of 2nd dimension"""
assert z.size(0) == y.size(0)
global n_classes
z[:, :n_classes].zero_() # code one hot along FIRST n_classes feature maps.
for ix, y in enumerate(y):
z[ix, y] = 1
def fill_noise(noise, lab, new_lab=False):
global n_classes, cpulabels, cpunoise
cpulabels.resize_(lab.data.size())
cpunoise. resize_(noise.data.size())
if new_lab:
lab.data.copy_(cpulabels.random_(n_classes)) # randint
else:
cpulabels.copy_(lab.data)
cpunoise.normal_(0, 1)
code_y_onehot(cpunoise, cpulabels) # has to happen on cpu for eficiency
noise.data.copy_(cpunoise)
# Prepare fixed_noise
fixed_noise = torch.FloatTensor(n_classes, nz_tot, 1, 1).normal_(0, 1)
fixed_noise = fixed_noise.repeat(n_classes, 1,1,1)
fixed_y = [x // n_classes for x in range(n_classes**2)] # cycle thru classes
code_y_onehot(fixed_noise, torch.LongTensor(fixed_y))
else: # no class-conditioning
# fill_noise same signature as above, but ignore labels
def fill_noise(noise, lab=None, new_lab=None):
noise.data.normal_(0,1)
fixed_noise = torch.FloatTensor(opt.batchSize, nz_tot, 1, 1).normal_(0, 1)
one = torch.FloatTensor([1])
mone = one * -1
xe_crit = nn.CrossEntropyLoss()
lambdaF, lambdaS = torch.FloatTensor([0.0]), torch.FloatTensor([0.0]) # lagrange multipliers
if opt.cuda:
netD.cuda()
netG.cuda()
x_lab, x_unl = x_lab.cuda(), x_unl.cuda()
labels, fakelabels = cpulabels.cuda(), fakelabels.cuda()
one, mone = one.cuda(), mone.cuda()
noise, fixed_noise = cpunoise.cuda(), fixed_noise.cuda()
xe_crit = xe_crit.cuda()
lambdaF, lambdaS = lambdaF.cuda(), lambdaS.cuda()
else:
labels, noise = cpulabels.clone(), cpunoise.clone()
x_lab = Variable(x_lab)
x_unl = Variable(x_unl) # for logging: keep dL/dx
noise = Variable(noise)
labels = Variable(labels)
fakelabels = Variable(fakelabels)
fixed_noise = Variable(fixed_noise, volatile=True)
lambdaF = Variable(lambdaF, requires_grad=True)
lambdaS = Variable(lambdaS, requires_grad=True)
def computeParamNorm(net):
sq_norm, sq_norm_g = 0, 0
for p in net.parameters():
sq_norm += p.data.norm()**2
sq_norm_g += p.grad.data.norm()**2
return sq_norm**0.5, sq_norm_g**0.5
# setup optimizer, weight decay to Phi but not V.
paramsD = [{'params': list(netD.main.parameters()), 'weight_decay': opt.wdecay},
{'params': list(netD.V.parameters()), 'weight_decay': opt.wdecayV}]
if hasattr(netD, 'S_dot'):
paramsD.append({'params': list(netD.S_dot.parameters()), 'weight_decay': opt.wdecayS})
assert len([p for entry in paramsD for p in entry['params']]) == len(list(netD.parameters()))
if opt.rmsprop:
optimizerD = optim.RMSprop(paramsD, lr=opt.lrD)
optimizerG = optim.RMSprop(netG.parameters(), lr=opt.lrG)
elif opt.sgd:
optimizerD = optim.SGD(paramsD, lr=opt.lrD)
optimizerG = optim.SGD(netG.parameters(), lr=opt.lrG)
else:
optimizerD = optim.Adam(paramsD, lr=opt.lrD, betas=(opt.beta1, opt.beta2))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lrG, betas=(opt.beta1, opt.beta2))
def set_lr(optimizer, lrval):
for param_group in optimizer.param_groups:
param_group['lr'] = lrval
gen_iterations = 0
if opt.labeledSamples:
def inf_iter(dl):
while True:
newiter = iter(dl)
for batch in newiter:
yield batch
inf_lab_iter = inf_iter(lab_dataloader)
xe_p, xe_q, xe_gen = None, None, None
for epoch in range(opt.niter):
data_iter = iter(dataloader)
i = 0
while i < len(dataloader):
tic = timeit.default_timer()
is_log_iter = gen_iterations < 25 or gen_iterations % 10 == 0
############################
# (1) Update D network
###########################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
# train the discriminator n_c times
if opt.hiStart_n_c and (gen_iterations < 25 or gen_iterations % 500 == 0):
n_c = 100
else:
n_c = opt.n_c
j = 0
while j < n_c and i < len(dataloader):
netD.zero_grad()
if opt.labeledSamples:
# netD: XE with x_lab
###########################
x_lab_cpu, y_lab_cpu = inf_lab_iter.next()
x_lab.data.resize_(x_lab_cpu.size()).copy_(x_lab_cpu)
labels.data.resize_(y_lab_cpu.size(0)).copy_(y_lab_cpu)
_, S_phi_lab = netD(x_lab)
xe_p = xe_crit(S_phi_lab, labels)
# do bw pass, weighted with factor lambdaXE. retain state for GAN loss
xe_p.backward(one * opt.lambdaXE_D)
# netD: IPM with x_unl and x_gen
###########################
x_unl_cpu, _ = data_iter.next()
x_unl.data.resize_(x_unl_cpu.size()).copy_(x_unl_cpu)
x_unl.requires_grad = True # for grads in objective.
vphi_p, S_phi_p = netD(x_unl)
fill_noise(noise, fakelabels, new_lab=True)
x_gen = netG(noise).detach()
x_gen.requires_grad = True # for grads in objective.
vphi_q, S_phi_q = netD(x_gen)
Ep_vphi, Eq_vphi = vphi_p.mean(), vphi_q.mean()
f_p, fpos_p, fneg_p = critic(vphi_p, S_phi_p)
f_q, fpos_q, fneg_q = critic(vphi_q, S_phi_q)
Ep_f, Eq_f = f_p.mean(), f_q.mean()
obj_D = Ep_f - Eq_f
if opt.f_component_Fisher:
# Select the right critic component to operate on.
Fisher_f_p = ({'f': f_p, 'fpos': fpos_p, 'fneg': fneg_p})[opt.f_component_Fisher]
Fisher_f_q = ({'f': f_q, 'fpos': fpos_q, 'fneg': fneg_q})[opt.f_component_Fisher]
Ep_f_2, Eq_f_2 = (Fisher_f_p**2).mean(), (Fisher_f_q**2).mean()
constraintF = (0.5*Ep_f_2 + 0.5*Eq_f_2 - 1)
obj_D = obj_D - lambdaF * constraintF - opt.rhoFisher/2 * constraintF**2
if opt.f_component_Sobolev:
# Select the right critic component to operate on.
Sobolev_f_p = ({'f': f_p, 'fpos': fpos_p, 'fneg': fneg_p})[opt.f_component_Sobolev]
Sobolev_f_q = ({'f': f_q, 'fpos': fpos_q, 'fneg': fneg_q})[opt.f_component_Sobolev]
grad_f_p = torch.autograd.grad(Sobolev_f_p.sum(), x_unl, create_graph=True)[0]
grad_f_q = torch.autograd.grad(Sobolev_f_q.sum(), x_gen, create_graph=True)[0]
normgrad_f2_p = grad_f_p.view(grad_f_p.size(0), -1).pow(2).sum(dim=1, keepdim=False)
normgrad_f2_q = grad_f_q.view(grad_f_q.size(0), -1).pow(2).sum(dim=1, keepdim=False)
Ep_normgrad_f2 = normgrad_f2_p.mean()
Eq_normgrad_f2 = normgrad_f2_q.mean()
constraintS = (0.5*Ep_normgrad_f2 + 0.5*Eq_normgrad_f2 - 1)
obj_D = obj_D - lambdaS * constraintS - opt.rhoSobolev/2 * constraintS**2
if opt.f_component_GP:
# WGAN-GP with interpolates
interpol_alpha = torch.rand(1)[0]
x_mu = (x_unl + interpol_alpha * (x_gen - x_unl)).detach()
x_mu.requires_grad=True
vphi_mu, S_phi_mu = netD(x_mu)
f_mu, fpos_mu, fneg_mu = critic(vphi_mu, S_phi_mu)
GP_f_mu = ({'f': f_mu, 'fpos': fpos_mu, 'fneg': fneg_mu})[opt.f_component_GP]
grad_f_mu = torch.autograd.grad(GP_f_mu.sum(), x_mu, create_graph=True)[0]
normgrad_f_mu = grad_f_mu.view(grad_f_mu.size(0), -1).pow(2).sum(dim=1).sqrt()
constraintGP = ((normgrad_f_mu - 1) ** 2).mean() # NOTE -1 inside, per-sample
obj_D = obj_D - opt.lambdaGP * constraintGP
obj_D.backward(mone) # max_w,v min_alpha
optimizerD.step()
# artisanal sgd. Note we minimze lambdaF, lambdaS so a <- a + lr * grad
if opt.f_component_Fisher:
lambdaF.data += opt.rhoFisher * lambdaF.grad.data
lambdaF.grad.data.zero_()
if opt.f_component_Sobolev:
lambdaS.data += opt.rhoSobolev * lambdaS.grad.data
lambdaS.grad.data.zero_()
i, j = i+1, j+1
############################
# (2) Update G network
###########################
# Here use suffix _gen instead of _p and _q
for p in netD.parameters():
p.requires_grad = False # to avoid computation
netG.zero_grad()
fill_noise(noise, fakelabels, new_lab=True) # fakelabels never change size
x_gen = netG(noise)
if is_log_iter:
def hook(g):
global grad_x_gen_norm
grad_x_gen_norm = g.data.norm() / (g.size(0) ** 0.5) # per sample: mean per minibatch
hookhandle = x_gen.register_hook(hook)
vphi_gen, S_phi_gen = netD(x_gen)
if opt.conditionalG:
xe_gen = xe_crit(S_phi_gen, fakelabels)
xe_gen.backward(one * opt.lambdaXE_G, retain_variables=True)
f_gen, fpos_gen, fneg_gen = critic(vphi_gen, S_phi_gen)
Egen_vphi = vphi_gen.mean()
Egen_f = f_gen.mean()
obj_G = - Egen_f
obj_G.backward() # G: min_theta max_beta
optimizerG.step()
gen_iterations += 1
if is_log_iter:
# For logging: take vals at last D update iteration
IPM_enum = Ep_f.data[0] - Eq_f.data[0]
constr_fisher = (0.5*Ep_f_2.data[0] + 0.5*Eq_f_2.data[0])**0.5 if opt.f_component_Fisher else 0.0
constr_sobolev = (0.5*Ep_normgrad_f2.data[0] + 0.5*Eq_normgrad_f2.data[0])**0.5 if opt.f_component_Sobolev else 0.0
constr_gp = normgrad_f_mu.data[0] if opt.f_component_GP else 0.0
w_numel, w_norm, grad_w_norm = 0, 0, 0
w_norm, grad_w_norm = computeParamNorm(netD.main)
theta_norm, grad_theta_norm = computeParamNorm(netG)
v_norm = netD.V.weight.data.norm()
s_norm = 's_norm: %.4f ' % netD.S_dot.weight.data.norm() if hasattr(netD, 'S_dot') else ''
grad_x_unl_norm = x_unl.grad.data.norm() / (x_unl.size(0) ** 0.5) # per sample: mean over minibatch
x_unl.grad.data.zero_() # computed on demand; clear it afterwards
toc = timeit.default_timer()
#import ipdb; ipdb.set_trace() # try locals() globals()
logString = ('[%d/%d][%d/%d] IPM_enum: %.4f constr_fisher: %.4f constr_sobolev: %.4f constr_gp: %.4f '
'Ep_vphi: %.4f Ep_f: %.4f ' #Ep_f^2: %.4f Ep_normgradf^2: %.4f '
'Eq_vphi: %.4f Eq_f: %.4f ' #Eq_f^2: %.4f Eq_normgradf^2: %.4f '
'Egen_vphi: %.4f Egen_f: %.4f v_norm: %.4f %s w_norm: %.4f '
'grad_w_norm %.4f theta_norm: %.4f grad_theta_norm %.4f grad_x_norm %.4f '
'grad_x_gen_norm %.4f lambdaF: %.4f lambdaS: %.4f iter_time %.4f') % (
epoch, opt.niter, gen_iterations, len(dataloader), IPM_enum, constr_fisher, constr_sobolev, constr_gp,
Ep_vphi.data[0], Ep_f.data[0], # Ep_f_2.data[0], Ep_normgrad_f2.data[0],
Eq_vphi.data[0], Eq_f.data[0], # Eq_f_2.data[0], Eq_normgrad_f2.data[0],
Egen_vphi.data[0], Egen_f.data[0],
v_norm, s_norm, w_norm, grad_w_norm, theta_norm, grad_theta_norm,
grad_x_unl_norm, grad_x_gen_norm, lambdaF.data[0], lambdaS.data[0], toc-tic)
if xe_p is not None:
logString += ' xe_p: %.4f' % xe_p.data[0]
if xe_q is not None:
logString += ' xe_q: %.4f' % xe_q.data[0]
if xe_gen is not None:
logString += ' xe_gen: %.4f' % xe_gen.data[0]
print(logString)
if gen_iterations % 500 == 0:
vutils.save_image(x_unl_cpu, '{0}/real_samples.png'.format(opt.outputdir), normalize=True)
netG.eval()
fake = netG(fixed_noise)
ncols = n_classes if opt.conditionalG else int(opt.batchSize ** 0.5)
vutils.save_image(fake.data, '{0}/fake_samples_eval_{1}.png'.format(opt.outputdir, gen_iterations), ncols, normalize=True)
netG.train()
fake = netG(fixed_noise)
vutils.save_image(fake.data, '{0}/fake_samples_{1}.png'.format(opt.outputdir, gen_iterations), ncols, normalize=True)
# End of epoch: validation data
if val_dataset:
x_lab.volatile=True
def eval_except_BN(mod):
mod.training = bool('BatchNorm' in type(mod).__name__)
netD.apply(eval_except_BN)
E_val_f, E_val_fpos, E_val_fneg, E_val_f_2, xe_val, acc = 0, 0, 0, 0, 0, 0
for val_cpu, lab_cpu in val_dataloader:
x_lab.data.resize_(val_cpu.size()).copy_(val_cpu)
labels.data.resize_(lab_cpu.squeeze().size()).copy_(lab_cpu.squeeze())
vphi_val, S_phi_val = netD(x_lab)
f_val, fpos_val, fneg_val = critic(vphi_val, S_phi_val)
if S_phi_val is not None:
xe_val_ = xe_crit(S_phi_val, labels)
xe_val += xe_val_.data[0]
_, labels_pred = torch.max(S_phi_val, 1, keepdim=False)
acc += labels.data.eq(labels_pred.data).sum()
E_val_f += f_val.mean().data[0]
E_val_f_2 += (f_val**2).mean().data[0]
E_val_fpos += fpos_val.mean().data[0]
if fneg_val is not None:
E_val_fneg += fneg_val.mean().data[0]
netD.train()
E_val_f /= len(val_dataloader)
E_val_f_2 /= len(val_dataloader)
E_val_fpos /= len(val_dataloader)
E_val_fneg /= len(val_dataloader)
xe_val /= len(val_dataloader)
acc = float(acc) / len(val_dataset)
x_lab.volatile=False
print('VAL[%d][%d] E_f: %.4f E_f^2: %.4f E_fpos: %.4f E_fneg: %.4f xe: %.4f acc: %.4f' %
(epoch, gen_iterations, E_val_f, E_val_f_2, E_val_fpos, E_val_fneg, xe_val, acc))
if epoch > 0 and opt.lrDcut > 0 and epoch % opt.lrDcut == 0:
lrFac = 2**(epoch // opt.lrDcut)
print('End of epoch {}, use lrD = opt.lrD / {} = {}'.format(epoch, lrFac, opt.lrD/lrFac))
set_lr(optimizerD, opt.lrD/lrFac)
if epoch > 0 and opt.lrGcut > 0 and epoch % opt.lrGcut == 0:
lrFac = 2**(epoch // opt.lrGcut)
print('End of epoch {}, use lrG = opt.lrG / {} = {}'.format(epoch, lrFac, opt.lrG/lrFac))
set_lr(optimizerG, opt.lrG/lrFac)
# checkpointing
torch.save(netG.state_dict(), '{0}/netG_last.pth'.format(opt.outputdir))
torch.save(netD.state_dict(), '{0}/netD_last.pth'.format(opt.outputdir))
sys.stdout.flush()