-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain_cgtn.py
881 lines (774 loc) · 41.2 KB
/
train_cgtn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
"""
Copyright (c) 2020 Uber Technologies, Inc.
Licensed under the Uber Non-Commercial License (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at the root directory of this project.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import pickle
import json
import time
import math
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import grad
import numpy as np
import torchvision
import torchvision.datasets as datasets
import horovod.torch as hvd
from models import Classifier, Generator, Encoder, sample_model
import inner_optimizers
from gradient_helpers import SurrogateLoss, gradient_checkpointing
import nest
import models
import tabular_logger as tlogger
def main(num_inner_iterations=64,
noise_size=128,
inner_loop_init_lr=0.2,
inner_loop_init_momentum=0.5,
training_iterations_schedule=5,
min_training_iterations=4,
lr=0.1,
rms_momentum=0.9,
final_relative_lr=1e-2,
generator_batch_size=128,
meta_batch_size=512,
adam_epsilon=1e-8,
adam_beta1=0.0,
adam_beta2=0.999,
num_meta_iterations=1000,
starting_meta_iteration=1,
max_elapsed_time=None,
gradient_block_size=16,
use_intermediate_losses=0,
intermediate_losses_ratio=1.0,
data_path='./data',
meta_optimizer="adam",
dataset='MNIST',
logging_period=10,
generator_type="cgtn",
learner_type="base",
validation_learner_type=None,
warmup_iterations=None,
warmup_learner="base",
final_batch_norm_forward=False,
# The following flag is used for architecture search (it maps iteration to a specific architecture)
iteration_maps_seed=False,
use_dataset_augmentation=False,
training_schedule_backwards=True,
evenly_distributed_labels=True,
iterations_depth_schedule=100,
use_encoder=True,
decoder_loss_multiplier=1.0,
load_from=None,
virtual_batch_size=1,
deterministic=False,
seed=1,
grad_bound=None,
version=None, # dummy variable
enable_checkpointing=True,
randomize_width=False,
step_by_step_validation=True,
semisupervised_classifier_loss=True,
semisupervised_student_loss=True,
automl_class=None,
inner_loop_optimizer="SGD",
meta_learn_labels=False,
device='cuda'):
validation_learner_type = validation_learner_type or learner_type
hvd.init()
assert hvd.mpi_threads_supported()
from mpi4py import MPI
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
lr = lr * virtual_batch_size * hvd.size()
torch.cuda.set_device(hvd.local_rank())
# Load dataset
img_shape, trainset, validationset, (testset_x, testset_y) = get_dataset(
dataset, data_path, seed, device, with_augmentation=use_dataset_augmentation)
validation_x, validation_y = zip(*validationset)
validation_x = torch.stack(validation_x).to(device)
validation_y = torch.as_tensor(validation_y).to(device)
# Make each worker slightly different
torch.manual_seed(seed + hvd.rank())
np.random.seed(seed + hvd.rank())
if generator_type == "semisupervised":
unlabelled_trainset, trainset = torch.utils.data.random_split(trainset, [49500, 500])
data_loader = torch.utils.data.DataLoader(trainset, batch_size=meta_batch_size, shuffle=True, drop_last=True, num_workers=1, pin_memory=True)
data_loader = EndlessDataLoader(data_loader)
if generator_type == "cgtn":
generator = CGTN(
generator=Generator(noise_size + 10, img_shape),
num_inner_iterations=num_inner_iterations,
generator_batch_size=generator_batch_size,
noise_size=noise_size,
evenly_distributed_labels=evenly_distributed_labels,
meta_learn_labels=bool(meta_learn_labels),
)
elif generator_type == "cgtn_all_shuffled":
generator = CGTNAllShuffled(
generator=Generator(noise_size + 10, img_shape),
num_inner_iterations=num_inner_iterations,
generator_batch_size=generator_batch_size,
noise_size=noise_size,
evenly_distributed_labels=evenly_distributed_labels,
)
elif generator_type == "cgtn_batch_shuffled":
generator = CGTNBatchShuffled(
generator=Generator(noise_size + 10, img_shape),
num_inner_iterations=num_inner_iterations,
generator_batch_size=generator_batch_size,
noise_size=noise_size,
evenly_distributed_labels=evenly_distributed_labels,
)
elif generator_type == "gtn":
generator = GTN(
generator=Generator(noise_size + 10, img_shape),
generator_batch_size=generator_batch_size,
noise_size=noise_size,
)
elif generator_type == "gaussian_cgtn":
generator = GaussianCGTN(
generator=Generator(noise_size + 10, img_shape),
num_inner_iterations=num_inner_iterations,
generator_batch_size=generator_batch_size,
noise_size=noise_size,
)
elif generator_type == "dataset":
generator = UniformSamplingGenerator(
torch.utils.data.DataLoader(trainset, batch_size=generator_batch_size, shuffle=True, drop_last=True),
num_inner_iterations=num_inner_iterations,
device=device,
)
elif generator_type == "distillation":
generator = DatasetDistillation(
img_shape=img_shape,
num_inner_iterations=num_inner_iterations,
generator_batch_size=generator_batch_size,
)
elif generator_type == "semisupervised":
generator = SemisupervisedGenerator(
torch.utils.data.DataLoader(unlabelled_trainset, batch_size=generator_batch_size, shuffle=True, drop_last=True),
num_inner_iterations=num_inner_iterations,
device=device,
classifier=models.ClassifierLarger2(img_shape, batch_norm_momentum=0.9, randomize_width=False)
)
else:
raise NotImplementedError()
# Create meta-objective models
if inner_loop_optimizer == "SGD":
optimizers = [inner_optimizers.SGD(inner_loop_init_lr, inner_loop_init_momentum, num_inner_iterations)]
elif inner_loop_optimizer == "RMSProp":
optimizers = [inner_optimizers.RMSProp(inner_loop_init_lr, inner_loop_init_momentum, num_inner_iterations)]
elif inner_loop_optimizer == "Adam":
optimizers = [inner_optimizers.Adam(inner_loop_init_lr, inner_loop_init_momentum, num_inner_iterations)]
else:
raise ValueError(f"Inner loop optimizer '{inner_loop_optimizer}' not available")
automl = (automl_class or AutoML)(
generator=generator,
optimizers=optimizers,
)
if use_encoder:
automl.encoder = Encoder(img_shape, output_size=noise_size)
automl = automl.to(device)
if meta_optimizer == "adam":
optimizer = torch.optim.Adam(automl.parameters(), lr=lr, betas=(adam_beta1, adam_beta2), eps=adam_epsilon)
elif meta_optimizer == "sgd":
optimizer = torch.optim.SGD(automl.parameters(), lr=lr, momentum=rms_momentum)
elif meta_optimizer == "RMS":
optimizer = torch.optim.RMSprop(automl.parameters(), lr=lr, alpha=adam_beta1, momentum=rms_momentum, eps=adam_epsilon)
else:
raise NotImplementedError()
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_meta_iterations, lr * final_relative_lr)
if hvd.rank() == 0:
if load_from:
state = torch.load(load_from)
automl.load_state_dict(state["model"])
if lr > 0:
optimizer.load_state_dict(state["optimizer"])
del state
tlogger.info("loaded from:", load_from)
total_num_parameters = 0
for name, value in automl.named_parameters():
tlogger.info("Optimizing parameter:", name, value.shape)
total_num_parameters += np.prod(value.shape)
tlogger.info("Total number of parameters:", int(total_num_parameters))
def compute_learner(learner, iterations=num_inner_iterations, keep_grad=True, callback=None):
learner.model.train()
names, params = list(zip(*learner.model.get_parameters()))
buffers = list(zip(*learner.model.named_buffers()))
if buffers:
buffer_names, buffers = buffers
else:
buffer_names, buffers = None, ()
param_shapes = [p.shape for p in params]
param_sizes = [np.prod(shape) for shape in param_shapes]
param_end_point = np.cumsum(param_sizes)
buffer_shapes = [p.shape for p in buffers]
buffer_sizes = [np.prod(shape) for shape in buffer_shapes]
buffer_end_point = np.cumsum(buffer_sizes)
def split_params(fused_params):
# return fused_params
assert len(fused_params) == 1
return [fused_params[0][end - size:end].reshape(shape) for end, size, shape in zip(param_end_point, param_sizes, param_shapes)]
def split_buffer(fused_params):
if fused_params:
# return fused_params
assert len(fused_params) == 1
return [fused_params[0][end - size:end].reshape(shape) for end, size, shape in zip(buffer_end_point, buffer_sizes, buffer_shapes)]
return fused_params
# test = split_params(torch.cat([p.flatten() for p in params]))
# assert all([np.allclose(params[i].detach().cpu(), test[i].detach().cpu()) for i in range(len(test))])
params = [torch.cat([p.flatten() for p in params])]
buffers = [torch.cat([p.flatten() for p in buffers])] if buffers else buffers
optimizer_state = learner.optimizer.initial_state(params)
params = params, buffers
initial_params = nest.map_structure(lambda p: None, params)
losses = {}
accuracies = {}
def intermediate_loss(params):
params = nest.pack_sequence_as(initial_params, params[1:])
params, buffers = params
x, y = next(meta_generator)
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
learner.model.set_parameters(list(zip(names, split_params(params))))
if buffer_names:
learner.model.set_buffers(list(zip(buffer_names, split_buffer(buffers))))
learner.model.eval()
pred = learner.model(x)
if isinstance(pred, tuple):
pred, aux_pred = pred
loss = F.nll_loss(pred, y) + F.nll_loss(aux_pred, y)
else:
loss = F.nll_loss(pred, y)
return loss * intermediate_losses_ratio
if hasattr(automl.generator, "init"):
generator_args = [automl.generator.init()]
else:
generator_args = []
def body(args):
it, params, optimizer_state = args
if training_schedule_backwards:
x, y_one_hot = automl.generator(iterations - it - 1, *generator_args)
else:
x, y_one_hot = automl.generator(it, *generator_args)
with torch.enable_grad():
if use_intermediate_losses > 0 and (it >= use_intermediate_losses and it % use_intermediate_losses == 0):
params = SurrogateLoss.apply(intermediate_loss, it, *nest.flatten(params))
params = nest.pack_sequence_as(initial_params, params[1:])
params, buffers = params
for p in params:
if not p.requires_grad:
p.requires_grad = True
learner.model.set_parameters(list(zip(names, split_params(params))))
if buffer_names:
learner.model.set_buffers(list(zip(buffer_names, split_buffer(buffers))))
learner.model.train()
output = learner.model(x)
if isinstance(output, tuple):
output1, output2 = output
loss = - (output1 * y_one_hot).sum() * (1 / output1.shape[0])
loss = loss - (output2 * y_one_hot).sum() * (1 / output2.shape[0])
pred = output1
else:
loss = -(output * y_one_hot).sum() * (1 / output.shape[0])
pred = output
if it.item() not in losses:
losses[it.item()] = loss.detach().cpu().item()
accuracies[it.item()] = (pred.max(-1).indices == y_one_hot.max(-1).indices).to(torch.float).mean().item()
grads = grad(loss, params, create_graph=x.requires_grad, allow_unused=True)
# assert len(grads) == len(names)
new_params, optimizer_state = learner.optimizer(it, params, grads, optimizer_state)
buffers = list(learner.model.buffers())
buffers = [torch.cat([b.flatten() for b in buffers])] if buffers else buffers
if callback is not None:
learner.model.set_parameters(list(zip(names, split_params(params))))
if buffer_names:
learner.model.set_buffers(list(zip(buffer_names, split_buffer(buffers))))
callback(learner)
return (it + 1, (new_params, buffers,), optimizer_state)
last_state, params, optimizer_state = gradient_checkpointing((torch.as_tensor(0), params, optimizer_state), body, iterations,
block_size=gradient_block_size)
assert last_state.item() == iterations
params, buffers = params
learner.model.set_parameters(list(zip(names, split_params(params))))
if buffer_names:
learner.model.set_buffers(list(zip(buffer_names, split_buffer(buffers))))
if final_batch_norm_forward:
x, _ = automl.generator(torch.randint(iterations, size=()))
learner.model.train()
learner.model(x)
return learner, losses, accuracies
tstart = time.time()
meta_generator = iter(data_loader)
hvd.broadcast_parameters(automl.state_dict(), root_rank=0)
best_optimizers = {}
validation_accuracy = None
total_inner_iterations_so_far = 0
for iteration in range(starting_meta_iteration, num_meta_iterations + 1):
last_iteration = time.time()
# basic logging
tlogger.record_tabular('Iteration', iteration)
tlogger.record_tabular('lr', optimizer.param_groups[0]['lr'])
# Train learner
if training_iterations_schedule > 0:
training_iterations = int(min(num_inner_iterations, min_training_iterations +
(iteration - starting_meta_iteration) // training_iterations_schedule))
else:
training_iterations = num_inner_iterations
tlogger.record_tabular('training_iterations', training_iterations)
total_inner_iterations_so_far += training_iterations
tlogger.record_tabular('training_iterations_so_far', total_inner_iterations_so_far * hvd.size())
optimizer.zero_grad()
for _ in range(virtual_batch_size):
torch.cuda.empty_cache()
meta_x, meta_y = next(meta_generator)
meta_x = meta_x.to('cuda', non_blocking=True)
meta_y = meta_y.to('cuda', non_blocking=True)
tstart_forward = time.time()
if generator_type != "semisupervised" or semisupervised_student_loss:
# TODO: Learn batchnorm momentum and eps
sample_learner_type = learner_type
if warmup_iterations is not None and iteration < warmup_iterations:
sample_learner_type = warmup_learner
learner, encoding = automl.sample_learner(img_shape, device,
allow_nas=False,
randomize_width=randomize_width,
learner_type=sample_learner_type,
iteration_maps_seed=iteration_maps_seed,
iteration=iteration,
deterministic=deterministic,
iterations_depth_schedule=iterations_depth_schedule)
automl.train()
if lr == 0.0:
with torch.no_grad():
learner, intermediate_losses, intermediate_accuracies = compute_learner(learner, iterations=training_iterations, keep_grad=lr > 0.0)
else:
learner, intermediate_losses, intermediate_accuracies = compute_learner(learner, iterations=training_iterations, keep_grad=lr > 0.0)
# TODO: remove this requirement
params = list(learner.model.get_parameters())
learner.model.eval()
# Evaluate learner on training and back-prop
torch.cuda.empty_cache()
pred = learner.model(meta_x)
if isinstance(pred, tuple):
pred, aux_pred = pred
loss = F.nll_loss(pred, meta_y) + F.nll_loss(aux_pred, meta_y)
else:
loss = F.nll_loss(pred, meta_y)
accuracy = (pred.max(-1).indices == meta_y).to(torch.float).mean()
tlogger.record_tabular("TimeElapsedForward", time.time() - tstart_forward)
num_parameters = sum([a[1].size().numel() for a in params])
tlogger.record_tabular("TrainingLearnerParameters", num_parameters)
tlogger.record_tabular("optimizer", type(learner.optimizer).__name__)
tlogger.record_tabular('meta_training_loss', loss.item())
tlogger.record_tabular('meta_training_accuracy', accuracy.item())
tlogger.record_tabular('training_accuracies', intermediate_accuracies)
tlogger.record_tabular('training_losses', intermediate_losses)
tlogger.record_tabular("dag", encoding)
else:
loss = torch.as_tensor(0.0)
if lr > 0.0:
tstart_backward = time.time()
if generator_type != "semisupervised" or semisupervised_student_loss:
loss.backward()
if generator_type == "semisupervised" and semisupervised_classifier_loss:
automl.generator.classifier.train()
pred = automl.generator.classifier(meta_x)
accuracy = (pred.max(-1).indices == meta_y).to(torch.float).mean()
loss2 = F.nll_loss(pred, meta_y)
loss2.backward()
tlogger.record_tabular('meta_training_generator_loss', loss2.item())
tlogger.record_tabular('meta_training_generator_accuracy', accuracy.item())
loss = loss + loss2
del loss2
tlogger.record_tabular("TimeElapsedBackward", time.time() - tstart_backward)
if use_encoder:
# TODO: add loss weight
meta_encoding = automl.encoder(meta_x)
meta_y_one_hot = torch.zeros(meta_x.shape[0], 10, device=device)
meta_y_one_hot.scatter_(1, meta_y.unsqueeze(-1), 1)
meta_encoding = torch.cat([meta_encoding, meta_y_one_hot], -1)
reconstruct = automl.generator.generator(meta_encoding)
ae_loss = decoder_loss_multiplier * F.mse_loss(reconstruct, meta_x)
ae_loss.backward()
tlogger.record_tabular("decoder_loss", ae_loss.item())
if lr > 0.0:
# If using distributed training aggregard gradients with Horovod
maybe_allreduce_grads(automl)
if grad_bound is not None:
nn.utils.clip_grad_norm_(automl.parameters(), grad_bound)
optimizer.step()
if max_elapsed_time is not None:
scheduler.step(round((time.time() - tstart) / max_elapsed_time * num_meta_iterations))
else:
scheduler.step(iteration - 1)
is_last_iteration = iteration == num_meta_iterations or (max_elapsed_time is not None and time.time() - tstart > max_elapsed_time)
if np.isnan(loss.item()):
tlogger.info("NaN training loss, terminating")
is_last_iteration = True
is_last_iteration = MPI.COMM_WORLD.bcast(is_last_iteration, root=0)
if iteration == 1 or iteration % logging_period == 0 or is_last_iteration:
tstart_validation = time.time()
val_loss, val_accuracy = [], []
test_loss, test_accuracy = [], []
if generator_type == "semisupervised":
# Validation set
evaluate_set(generator.classifier, validation_x, validation_y, "generator_validation")
# Test set
evaluate_set(generator.classifier, testset_x, testset_y, "generator_test")
else:
def compute_learner_callback(learner):
# Validation set
validation_loss, single_validation_accuracy, validation_accuracy = evaluate_set(learner.model, validation_x, validation_y, "validation")
val_loss.append(validation_loss)
val_accuracy.append(validation_accuracy)
best_optimizers[type(learner.optimizer).__name__] = single_validation_accuracy.item()
# Test set
loss, _, accuracy = evaluate_set(learner.model, testset_x, testset_y, "test")
test_loss.append(loss)
test_accuracy.append(accuracy)
tlogger.info("sampling another learner_type ({}) for validation".format(validation_learner_type))
learner, _ = automl.sample_learner(img_shape, device,
allow_nas=False,
learner_type=validation_learner_type,
iteration_maps_seed=iteration_maps_seed,
iteration=iteration,
deterministic=deterministic,
iterations_depth_schedule=iterations_depth_schedule
)
if step_by_step_validation:
compute_learner_callback(learner)
with torch.no_grad():
learner, _, _ = compute_learner(learner, iterations=training_iterations, keep_grad=False,
callback=compute_learner_callback if step_by_step_validation else None)
if not step_by_step_validation:
compute_learner_callback(learner)
tlogger.record_tabular("validation_losses", val_loss)
tlogger.record_tabular("validation_accuracies", val_accuracy)
validation_accuracy = val_accuracy[-1]
tlogger.record_tabular("test_losses", test_loss)
tlogger.record_tabular("test_accuracies", test_accuracy)
# Extra logging
tlogger.record_tabular('TimeElapsedIter', (tstart_validation - last_iteration) / virtual_batch_size)
tlogger.record_tabular('TimeElapsedValidation', time.time() - tstart_validation)
tlogger.record_tabular('TimeElapsed', time.time() - tstart)
for k, v in best_optimizers.items():
tlogger.record_tabular("{}_last_accuracy".format(k), v)
if hvd.rank() == 0:
tlogger.dump_tabular()
if (iteration == 1 or iteration % 1000 == 0 or is_last_iteration):
with torch.no_grad():
if enable_checkpointing:
batches = []
for it in range(num_inner_iterations):
if training_schedule_backwards:
x, y = automl.generator(num_inner_iterations - it - 1)
else:
x, y = automl.generator(it)
batches.append((x.cpu().numpy(), y.cpu().numpy()))
batches = list(reversed(batches))
with open(os.path.join(tlogger.get_dir(), 'samples_{}.pkl'.format(iteration)), 'wb') as file:
pickle.dump(batches, file)
del batches
tlogger.info("Saved:", os.path.join(tlogger.get_dir(), 'samples_{}.pkl'.format(iteration)))
ckpt = os.path.join(tlogger.get_dir(), 'checkpoint_{}.pkl'.format(iteration))
torch.save({
"optimizer": optimizer.state_dict(),
"model": automl.state_dict(),
}, ckpt)
tlogger.info("Saved:", ckpt)
if is_last_iteration:
break
elif hvd.rank() == 0:
tlogger.info("training_loss:", loss.item())
return validation_accuracy
class Cutout(object):
def __init__(self, length=16):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def get_dataset(dataset, data_path, seed, device, with_augmentation=False, cutout_size=16):
torch.manual_seed(seed)
# Load dataset
if dataset == "MNIST":
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,)),
])
trainset = datasets.MNIST(root=data_path, train=True, download=hvd.rank() == 0, transform=transform)
trainset, validationset = torch.utils.data.random_split(trainset, [50000, 10000])
testset = datasets.MNIST(root=data_path, train=False, download=hvd.rank() == 0, transform=transform)
img_shape = (1, 28, 28)
elif dataset == "CIFAR10":
img_mean = [0.49139968, 0.48215827, 0.44653124]
img_std = [0.24703233, 0.24348505, 0.26158768]
# img_mean = [0.5, 0.5, 0.5]
# img_std = [0.5, 0.5, 0.5]
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(img_mean, img_std),
])
if with_augmentation:
transform_train = torchvision.transforms.Compose([
torchvision.transforms.RandomCrop(32, padding=4),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(img_mean, img_std),
# Cutout(cutout_size),
])
else:
transform_train = transform
img_mean = torch.as_tensor(img_mean).to(device)[..., None, None]
img_std = torch.as_tensor(img_std).to(device)[..., None, None]
trainset = datasets.CIFAR10(root=data_path, train=True, download=hvd.rank() == 0, transform=transform_train)
validationset = datasets.CIFAR10(root=data_path, train=True, download=hvd.rank() == 0, transform=transform)
# Split train and validationset
lengths = [45000, 5000]
indices = torch.randperm(sum(lengths)).tolist()
trainset = torch.utils.data.dataset.Subset(trainset, indices[:lengths[0]])
validationset = torch.utils.data.dataset.Subset(validationset, indices[-lengths[1]:])
testset = datasets.CIFAR10(root=data_path, train=False, download=hvd.rank() == 0, transform=transform)
img_shape = (3, 32, 32)
else:
raise ValueError("Invalid dataset {}".format(dataset))
# Make each worker slightly different
torch.manual_seed(seed + hvd.rank())
# validation
# TODO: Remove augmentation or make it "dynamic"
testset_x, testset_y = zip(*testset)
testset_x = torch.stack(testset_x).to(device)
testset_y = torch.as_tensor(testset_y).to(device)
return img_shape, trainset, validationset, (testset_x, testset_y)
def maybe_allreduce_grads(model):
if hvd.size() > 1:
tstart_reduce = time.time()
named_parameters = list(sorted(model.named_parameters(), key=lambda a: a[0]))
grad_handles = []
for name, p in named_parameters:
if p.requires_grad:
if p.grad is None:
p.grad = torch.zeros_like(p)
with torch.no_grad():
grad_handles.append(hvd.allreduce_async_(p.grad, name=name))
for handle in grad_handles:
hvd.synchronize(handle)
tlogger.record_tabular("TimeElapsedAllReduce", time.time() - tstart_reduce)
if time.time() - tstart_reduce > 5:
import socket
tlogger.info("Allreduce took more than 5 seconds for node {} (rank {})".format(socket.gethostname(), hvd.rank()))
def evaluate_set(model, x, y, name):
with torch.no_grad():
batch_size = 1000
validation_pred = []
model.eval()
for i in range(math.ceil(len(x) / batch_size)):
pred = model(x[i * batch_size:(i + 1) * batch_size])
if isinstance(pred, tuple):
pred, _ = pred
validation_pred.append(pred)
validation_pred = torch.cat(validation_pred, dim=0)
single_validation_accuracy = (validation_pred.max(-1).indices == y).to(torch.float).mean()
ensemble_pred = hvd.allreduce(torch.exp(validation_pred), name="{}_ensemble_pred".format(name))
ensemble_validation_accuracy = (ensemble_pred.max(-1).indices == y).to(torch.float).mean()
validation_accuracy = hvd.allreduce(single_validation_accuracy, name="{}_accuracy".format(name)).item()
validation_loss = hvd.allreduce(F.nll_loss(validation_pred, y), name="{}_loss".format(name)).item()
tlogger.record_tabular('{}_loss'.format(name), validation_loss)
tlogger.record_tabular('{}_accuracy'.format(name), validation_accuracy)
tlogger.record_tabular('ensemble_{}_accuracy'.format(name), ensemble_validation_accuracy)
return validation_loss, single_validation_accuracy, validation_accuracy
class CGTN(nn.Module):
def __init__(self, generator, num_inner_iterations, generator_batch_size, noise_size, evenly_distributed_labels=False, meta_learn_labels=False):
super().__init__()
self.generator_batch_size = generator_batch_size
self.generator = generator
if evenly_distributed_labels:
labels = torch.arange(num_inner_iterations * generator_batch_size) % 10
labels = torch.reshape(labels, (num_inner_iterations, generator_batch_size))
self.curriculum_labels = nn.Parameter(labels, requires_grad=False)
else:
self.curriculum_labels = nn.Parameter(torch.randint(10, size=(num_inner_iterations, generator_batch_size), dtype=torch.int64), requires_grad=False)
self.curriculum_labels_one_hot = torch.zeros(num_inner_iterations, generator_batch_size, 10)
self.curriculum_labels_one_hot.scatter_(2, self.curriculum_labels.unsqueeze(-1), 1)
self.curriculum_labels_one_hot = nn.Parameter(self.curriculum_labels_one_hot, requires_grad=meta_learn_labels)
# TODO: Maybe learn the soft-labels?
self.curriculum = nn.Parameter(torch.randn((num_inner_iterations, generator_batch_size, noise_size), dtype=torch.float32))
self.generator = torch.jit.trace(self.generator, (torch.rand(generator_batch_size, noise_size + 10),))
def forward(self, it):
label = self.curriculum_labels_one_hot[it]
noise = torch.cat([self.curriculum[it], label], dim=-1)
x = self.generator(noise)
if not x.requires_grad:
label = label.detach()
return x, label
class CGTNAllShuffled(CGTN):
def forward(self, it):
all_images = torch.reshape(self.curriculum, (-1,) + self.curriculum.shape[2:])
all_labels = torch.reshape(self.curriculum_labels_one_hot, (-1,) + self.curriculum_labels_one_hot.shape[2:])
idx = torch.randint(len(all_images), size=(self.generator_batch_size,), device=all_images.device)
noise = all_images[idx]
labels = all_labels[idx]
noise = torch.cat([noise, labels], dim=-1)
x = self.generator(noise)
return x, labels
class CGTNBatchShuffled(CGTN):
def forward(self, it):
idx = torch.randint(len(self.curriculum), size=())
noise = self.curriculum[idx]
labels = self.curriculum_labels_one_hot[idx]
noise = torch.cat([noise, labels], dim=-1)
x = self.generator(noise)
return x, labels
class GTN(nn.Module):
def __init__(self, generator, generator_batch_size, noise_size):
super().__init__()
self.generator = generator
self.generator_batch_size = generator_batch_size
self.noise_size = noise_size
self.generator = torch.jit.trace(self.generator, (torch.rand(generator_batch_size, noise_size + 10),))
def forward(self, it):
curriculum_labels = torch.randint(10, size=(self.generator_batch_size,), dtype=torch.int64, device="cuda")
curriculum_labels_one_hot = torch.zeros(self.generator_batch_size, 10, device="cuda")
curriculum_labels_one_hot.scatter_(1, curriculum_labels.unsqueeze(-1), 1)
curriculum_labels_one_hot = curriculum_labels_one_hot.to("cuda")
noise = torch.cat([torch.randn(self.generator_batch_size, self.noise_size, device="cuda"), curriculum_labels_one_hot], dim=-1)
x = self.generator(noise)
return x, curriculum_labels_one_hot
class DatasetDistillation(nn.Module):
def __init__(self, num_inner_iterations, generator_batch_size, img_shape):
super().__init__()
self.curriculum_labels = nn.Parameter(torch.randint(10, size=(num_inner_iterations, generator_batch_size), dtype=torch.int64), requires_grad=False)
self.curriculum_labels_one_hot = torch.zeros(num_inner_iterations, generator_batch_size, 10)
self.curriculum_labels_one_hot.scatter_(2, self.curriculum_labels.unsqueeze(-1), 1)
self.curriculum_labels_one_hot = nn.Parameter(self.curriculum_labels_one_hot, requires_grad=False)
self.curriculum = nn.Parameter(torch.randn((num_inner_iterations, generator_batch_size,) + img_shape, dtype=torch.float32))
def forward(self, it):
x = self.curriculum[it]
return torch.tanh(x) * 2, self.curriculum_labels_one_hot[it]
class GaussianCGTN(nn.Module):
def __init__(self, generator, num_inner_iterations, generator_batch_size, noise_size):
super().__init__()
self.generator = generator
self.curriculum_labels = nn.Parameter(torch.randint(10, size=(num_inner_iterations, generator_batch_size), dtype=torch.int64), requires_grad=False)
self.curriculum_labels_one_hot = torch.zeros(num_inner_iterations, generator_batch_size, 10)
self.curriculum_labels_one_hot.scatter_(2, self.curriculum_labels.unsqueeze(-1), 1)
self.curriculum_labels_one_hot = nn.Parameter(self.curriculum_labels_one_hot, requires_grad=False)
self.curriculum_mu = nn.Parameter(torch.zeros((num_inner_iterations, generator_batch_size, noise_size), dtype=torch.float32))
self.curriculum_log_sigma = nn.Parameter(torch.ones((num_inner_iterations, generator_batch_size, noise_size), dtype=torch.float32))
def forward(self, it):
noise = self.curriculum_mu[it] + torch.exp(self.curriculum_log_sigma[it]) * torch.randn_like(self.curriculum_log_sigma[it])
noise = torch.cat([noise, self.curriculum_labels_one_hot[it]], dim=-1)
x = self.generator(noise)
return torch.tanh(x) * 2, self.curriculum_labels_one_hot[it]
class UniformSamplingGenerator(nn.Module):
def __init__(self, dataset, num_inner_iterations, device):
super().__init__()
self.sampler = iter(EndlessDataLoader(dataset))
self.num_inner_iterations = num_inner_iterations
self.device = device
def init(self):
batches = []
for _ in range(self.num_inner_iterations):
x, y = next(self.sampler)
labels_one_hot = torch.zeros(y.size(0), 10)
labels_one_hot.scatter_(1, y.unsqueeze(-1), 1)
batches.append((nn.Parameter(x), nn.Parameter(labels_one_hot)))
return batches
def forward(self, x, batches=None):
if batches is None:
x, y = next(self.sampler)
labels_one_hot = torch.zeros(y.size(0), 10)
labels_one_hot.scatter_(1, y.unsqueeze(-1), 1)
batches = [x, labels_one_hot]
x = 0
return batches[x][0].to(self.device), batches[x][1].to(self.device)
class SemisupervisedGenerator(UniformSamplingGenerator):
def __init__(self, *args, classifier, **kwargs):
super().__init__(*args, **kwargs)
self.classifier = classifier
def forward(self, *args):
x, _ = super().forward(*args)
t = torch.exp(self.classifier(x))
return x, t
class Learner(nn.Module):
def __init__(self, model, optimizer):
super().__init__()
self.model = model
self.optimizer = optimizer
class AutoML(nn.Module):
def __init__(self, generator, optimizers, initial_batch_norm_momentum=0.9):
super().__init__()
self.generator = generator
self.optimizers = torch.nn.ModuleList(optimizers)
self.batch_norm_momentum_logit = nn.Parameter(torch.as_tensor(inner_optimizers.inv_sigmoid(0.9)))
@property
def batch_norm_momentum(self):
return torch.sigmoid(self.batch_norm_momentum_logit)
def sample_learner(self, input_shape, device, allow_nas=False, learner_type="base",
iteration_maps_seed=False, iteration=None, deterministic=False, iterations_depth_schedule=100, randomize_width=False):
if iteration_maps_seed:
iteration = iteration - 1
encoding = [iteration % 6, iteration // 6]
else:
encoding = None
if learner_type == "sampled":
layers = min(4, max(0, iteration // iterations_depth_schedule))
model, encoding = sample_model(input_shape, layers=layers, encoding=encoding, blocks=2,
seed=iteration if deterministic else None, batch_norm_momentum=0)
tlogger.record_tabular("encoding", encoding)
elif learner_type == "sampled4":
model, encoding = sample_model(input_shape, layers=4, encoding=encoding, seed=iteration if deterministic else None, batch_norm_momentum=0)
tlogger.record_tabular("encoding", encoding)
elif learner_type == "base":
model = Classifier(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width)
elif learner_type == "base_fc":
model = Classifier(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width, use_global_pooling=False)
elif learner_type == "linear":
model = models.LinearClassifier(input_shape)
elif learner_type == "base_larger":
model = models.ClassifierLarger(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width)
elif learner_type == "base_larger2":
model = models.ClassifierLarger2(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width)
elif learner_type == "base_larger3":
model = models.ClassifierLarger3(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width)
elif learner_type == "base_larger3_global_pooling":
model = models.ClassifierLarger3(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width, use_global_pooling=True)
elif learner_type == "base_larger4_global_pooling":
model = models.ClassifierLarger4(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width, use_global_pooling=True)
elif learner_type == "base_larger4":
model = models.ClassifierLarger4(input_shape, batch_norm_momentum=0.0, randomize_width=randomize_width, use_global_pooling=False)
else:
raise NotImplementedError()
return Learner(model=model.to(device), optimizer=np.random.choice(self.optimizers)), encoding
class EndlessDataLoader(object):
def __init__(self, data_loader):
self._data_loader = data_loader
def __iter__(self):
while True:
for batch in self._data_loader:
yield batch
def cli(**kwargs):
from tabular_logger import set_tlogger
with open("experiments/cgtn.json") as file:
kwargs = dict(json.load(file), **kwargs)
set_tlogger(kwargs.pop("name", "default"))
return main(**kwargs)
if __name__ == "__main__":
import fire
fire.Fire(cli)