
Wednesday 16th Oct 2024 9:22 am

TACS Static Problem Boundary Condition Handling

Current behaviour/problems

Primal solve

Computing adjoint derivatives

To compute the adjoint derivatives for the function f, it should work like this:

In a static solve, the state and residuals can be split based on the free and constrained DOF:

u = [], r(u) = [] = []
uf

uc

rf(u)

rc(u)

−Fin(u) − λFext(u)

uc − λu∗
c

Where u∗
c are the enforced values at the constrained DOF

The stiffness matrix/jacobian is then:

KT = = []
⎡⎢⎣ ∂rf

∂uf

∂rf
∂uc

∂rc
∂uf

∂rc
∂uc

⎤⎥⎦ Kff Kfc

0 I

And solving the standard linear system naturally produces a solution that naturally satisfies the BCs:

[] [] = − [] ⇒ [] = []
Kff Kfc

0 I

Δuf

Δuc

−Fin(u) − Fext(u)

uc − u∗
c

Δuf

Δuc

ΔK−1
ff (Fin + Fext − Kfc(u

∗
c − uc))

u∗
c − uc

Currently, TACS pretty much does this, except:
when setVariables is called, the constrained entries of the input u are overwritten with u∗

c so the state always satisfies
the BCs

Solve

[]
T

[] = ⇒ [] =
Kff Kfc

0 I

ψf

ψc

⎡⎢⎣ ∂f
∂uf

T

∂f
∂uc

T

⎤⎥⎦ ψf

ψc

⎡⎢⎣ K−T
ff

∂f
∂uf

T

∂f
∂uc

T
− K T

fcK
−T
ff

∂f
∂uf

T

⎤⎥⎦Boundary conditions should not be applied to the right hand side here because the fact that a DOF is constrained doesn't
change how that DOF affects the output function f
Then, to compute the total derivative w.r.t some variable x (e.g DVs or node coordinates):

df

dx
=

∂f

∂x
− ψT ∂r

∂x
=

∂f

∂x
− [ψT

f ,ψT
c][] =

∂f

∂x
− (ψT

f

∂rf
∂x

+ ψT
c

∂rc
∂x

)
∂rf
∂x
∂rc
∂x

Here the BCs are accounted for in ∂rc/∂x, for a simple Dirichlet BC the BC residual rc doesn't depend on DVs or node
coordinates, so ∂rc/∂x = 0 and:

df

dx
=

∂f

∂x
− ψT

f

∂rf

∂x
=

∂f

∂x
−(K−T

ff

∂f

∂uf

T

)

T
∂rf

∂x

What TACS currently does differs in a few ways but ultimately gives the correct result:
The TACSAssembler addSVSens method zeros out the sensitivities w.r.t the constrained DOF, so ∂f

∂uc
= 0

MPhys Jacobian-Vector products

APPLY_LINEAR

∂r/∂u

The adjoint solve is done with the non-transposed matrix, therefore:

[] [] = [] ⇒ [] = []
Kff Kfc

0 I

ψf

ψc

∂f
∂uf

T

0

ψf

ψc

K−1
ff

∂f
∂uf

T

0

The total derivative is then

df

dx
=

∂f

∂x
−(K−1

ff

∂f

∂uf

T

)

T
∂rf

∂x

Which is the correct result provided that Kff is symmetric and ∂rc/∂x = 0

Implemented in mphys TacsSolver class
This function should compute backward sensitivities of the residuals with respect to either states, DVs, or node coordinates

The product with the derivatives of the residuals w.r.t the states should be:

∂r

∂u

T

x = K T
T x = []

T

[] = []
Kff Kfc

0 I

xf

xc

kTffxf

K T
fcxf + xc

However, TACS doesn't actually have the ability to compute a product with the transpose of a matrix
TACS can assemble a transposed matrix, but the TACSSchurMat class doesn't have the ability to apply transposed boundary
conditions (zero-ing columns instead of rows)
So, what the static problem actually computes in addTransposeJacVecProduct is:

[] [] + [] = []
Kff Kfc

0 I

xf

0

0

xc

kffxf

xc

This is incorrect for two reasons:
The resulting vector contains Kffxf instead of K T

ffxf , this is usually not an issue since Kff is almost always symmetric
The resulting vector is missing the K T

fcxf term, this is a problem

Here's what the analytic jacobian computed using calls to addTransposeJacVecProduct and finite difference jacobian
computed by OpenMDAO look like:

Notice that the diagonal entries on the BC rows are missing from the FD jacobian, and the columns associated with the BCs
are zeroed, which should not be the case

∂r/∂xdv

Here are the same two jacobians with the proposed fixes implemented

Currently we get around this by using quite a slack tolerance on the mphys partial derivatives tests,
Because OpenMDAO tests the norm of the error over the whole jacobian so the test can pass even is some entries related to
the BCs are completely wrong
However, if we can compute a product with the transpose of KT without the boundary conditions applied, we can compute
the correct product:

[]
T

[] + [] = []
Kff Kfc

Kcf Kcc

xf

0

0

xc

kTffxf

K T
fcxf + xc

Alternatively, we can also compute a more correct product without any transpose if we have K without boundary conditions:

[] [] + [] = []
Kff Kfc

Kcf Kcc

xf

0

0

xc

kffxf

Kcfxf + xc

This is correct iff:
Kff is symmetric, almost always true
Kcf = K T

fc , also almost always true

There are three ways we could implement the correct product:
Re-assemble the stiffness matrix without applying BCs, compute the product, then re-assemble with BCs
Store a second TACS matrix in which we assemble KT without applying BCs and compute the product using that
Compute the product using the TACSAssembler addJacVecProduct method with the transpose option and without
applying BCs

∂r/∂xnode

COMPUTE_JACVEC_PRODUCT

Proposed changes

Open questions

Computes reverse product with the residual DV sensitivities:

Δxdv =
∂r

∂xdv

T

Δr = [
∂rf
∂xdv

T

,
∂rc

∂xdv

T

] [] =
∂rf
∂xdv

T

Δrf +
∂rc

∂xdv

T

Δrc
Δrf

Δrc

Since we assume the Dirichlet BC residual has no dependence on DVs, ∂rc
∂xdv

= 0, so:

Δxdv =
∂rf
∂xdv

T

Δrf

Calls static problem addAdjointResProducts method, which calls the TACSAssembler addAdjointResProducts method.
The TACSAssembler method doesn't account for the boundary conditions, but the static problem method zeros out Δrc, so
produces the correct result

Computes reverse product with the residual nodal coordinate sensitivities
Equations and implementation are pretty much identical to ∂r/∂xdv

Uses addAdjointResXptSensProducts methods of static problem and TACSAssembler
Again, zeros out Δrc, so produces the correct result

Implemented in MPhys TacsFunctions class
Product with function state variable sensitivities computed by addDVSens method
Currently this incorrectly zeros out BC terms, giving ∂f

∂uc
= 0

However, finite difference checks of this partial derivative pass because the setVariables method of the static problem
always sets uc = u∗

c

Remove call to setBCs in setVariables so that we're not overwriting the states OpenMDAO thinks it is setting
Add an applyBCs argument to the TACSAssembler functions that involve applying BCs:

assembleRes

assembleJacobian

assembleMatType

assembleMatCombo

addSVSens

evalMatSVSensInnerProduct

addJacobianVecProduct

addMatrixFreeVecProduct

Do not zero out boundary condition terms when calling addSVSens in static problem
Implement addTransposeJacVecProduct in static problem using the TACSAssembler addJacVecProduct method so that
it gives the correct result
Implement a scaling factor on the Dirichlet BC residual analagous to the load factor we have for scaling external forces, so
that load control and displacement control can be performed using a single scaling factor.

How does this BC handling apply to transient and buckling problems?

