-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_results.py
251 lines (208 loc) · 10.3 KB
/
evaluate_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import sys
import pickle
import torch
from models.tokenization_bert import BertTokenizer
import eval_utils
from dataset.relation_dataset import Relation_val_dataset
import glob
import re
from PIL import Image
def evaluate(args, config):
# set up position tokens
unus = ['[unused{}]'.format(x) for x in range(200,800)]
pos_token = ['@@']
pos_token.extend([f'[pos_{x}]' for x in range(512)])
pos_token.append('##')
pos_token.extend([f'[num_{x}]' for x in range(0,20)])
postoken_dict = {}
tokenizer = BertTokenizer.from_pretrained('configs/vocab.txt')
for x,y in zip(unus, pos_token):
un_index = tokenizer.vocab[x]
tokenizer.vocab[y] = un_index
postoken_dict[y] = un_index
_ = tokenizer.vocab.pop(x)
tokenizer.basic_tokenizer.never_split.add(y)
postoken_dict.pop('@@')
postoken_dict.pop('##')
postoken_index = torch.randn(30522).bool()
postoken_index[:] = False
for x in postoken_dict.values():
postoken_index[x]=True
postoken_dict_rev = {v:k for k,v in postoken_dict.items()}
postoken_dict_rev[int(tokenizer('@@').input_ids[-1])] = '@@'
postoken_dict_rev[int(tokenizer('##').input_ids[-1])] = '##'
# get ground truth text and boxes from test data
test_data = Relation_val_dataset(root = '', ann_file = config['test_file'], img_res=config['image_res'])
gt_relation_obj_text = []
gt_relation_obj_box = []
for i in range(0,len(test_data.ann)):
rel = test_data.ann[i]['relation'].replace('_',' ').split()
rel.append(test_data.ann[i]['obj'])
gt_relation_obj_text.append(rel)
gt_relation_obj_box.append(test_data.ann[i]['obj_box'])
# decode generated objects and boxes
results_files = glob.glob(args.results_folder+'*.json')
results_files.sort()
predicted_results = {}
for n in results_files:
temp = json.load(open(n,'r'))
predicted_results.update(temp)
print('There are', len(predicted_results),'predictions')
p = re.compile('pos_(\d+)')
img_info = {}
text_res = []
for img_id in predicted_results:
if img_id not in img_info:
image = Image.open(test_data.ann[int(img_id)]['root']+test_data.ann[int(img_id)]['file_name']+'.jpg').convert('RGB')
w, h = image.size
img_info[img_id] = [w,h]
else:
w, h = img_info[img_id]
all_sentence_candidates = []
results = predicted_results[img_id]
result_sequence = results['round2_sequences']
# deal with multiple predictions for each input subject
for output in result_sequence:
if type(output) == list:
output = output[0]
ans = []
for tok in output:
if int(tok) in postoken_dict_rev:
dec_tok = postoken_dict_rev[int(tok)]
else:
dec_tok = tokenizer.decode(tok)
ans.append(''.join(dec_tok.split()))
sentence = ' '.join(ans)
if ' @@' in sentence:
decode_sentence = sentence.split(' @@')[0].split('[CLS] ')[-1].replace(' ##','')
decode_positions = sentence.split(' @@')[1]
four_pos = p.findall(decode_positions)
if len(four_pos) != 4:
four_pos = [0,0,0,0]
else:
four_pos = [int(x) for x in four_pos]
four_pos[0] = four_pos[0]/512*w
four_pos[1] = four_pos[1]/512*h
four_pos[2] = four_pos[2]/512*w
four_pos[3] = four_pos[3]/512*h
elif ' [pos_' in sentence:
decode_sentence = sentence.split('[CLS] ')[-1].split(' [pos_')[0].replace(' ##','')
four_pos = [0,0,0,0]
else:
decode_sentence = sentence.split('[CLS] ')[-1].replace(' ##','')
four_pos = [0,0,0,0]
decode_sentence = decode_sentence.replace(' _ ','')
decode_sentence = decode_sentence
all_sentence_candidates.append([decode_sentence, four_pos])
text_res.append(all_sentence_candidates)
print('Finished decoding',len(text_res),'predicted sentences.')
# prepare synsets to evaluate relation+object text
oid_freq_rel_obj_valtest = oid_freq_valtest_verbs = oid_freq_valtest_objs = {}
for test_file in config['test_file']:
oid_freq, oid_freq_verbs, oid_freq_objs = eval_utils.get_synsets(test_file)
oid_freq_rel_obj_valtest.update(oid_freq)
oid_freq_valtest_verbs.update(oid_freq_verbs)
oid_freq_valtest_objs.update(oid_freq_objs)
# calculate accuracy
correct_text = 0.0
correct_box = 0.0
total_samples = 0.0
relation_type_results = {}
already_count_text = {}
for i in range(0,len(gt_relation_obj_text)):
gt = gt_relation_obj_text[i] # GT relation+object text
gt_box = gt_relation_obj_box[i] # GT object box
rel_token = ' '.join(gt).lower().replace('_',' ') # GT relation+object text
if rel_token not in relation_type_results:
relation_type_results[rel_token] = [0,0,0] # successfully retrieved text, successfully retrieved box, all cases
relation_type_results[rel_token][2] += 1
for res in text_res[i][:args.topk]:
res_text = res[0]
res_box = res[1]
if args.mode == 'syn':
pass_ = False
rel_word,obj_word = oid_freq_rel_obj_valtest[rel_token]
all_syn_rel = oid_freq_valtest_verbs[rel_word]
all_syn_obj = oid_freq_valtest_objs[obj_word]
pass_rel = False
pass_obj = False
res_text = ' ' + res_text + ' '
for syn_rel in all_syn_rel:
if syn_rel in res_text:
pass_rel = True
break
for syn_obj in all_syn_obj:
if syn_obj in res_text:
pass_obj = True
break
if pass_rel and pass_obj:
pass_ = True
elif args.mode == 'exact':
pass_ = False
if res_text == (' '.join(gt)).lower().replace('_',' '):
pass_ = True
if pass_:
# if this sample's relation+obj text is never predicted correctly, we count its correctness
if i not in already_count_text:
correct_text += 1
already_count_text[i] = 1
relation_type_results[rel_token][0] += 1
# if this sample's relation+obj and box are both predicted correctly, we count the correctness and keep looking at the next sample
if eval_utils.compute_iou(res_box,gt_box) >= args.box_threshold:
correct_box += 1
relation_type_results[rel_token][1] += 1
break
total_samples += 1
print('top k is ', args.topk)
print('box threshold is ',args.box_threshold)
print('Text Accuracy:',correct_text/total_samples)
print('Box Accuracy:',correct_box/total_samples)
if args.report_unseen:
bins = pickle.load(open('data_preparation/processed_data/coco_cc_oid_bins_52_100_20000.p','rb'))
text_cor = {'set0':0,'set1':0,'others':0,'all':0}
box_cor = {'set0':0,'set1':0,'others':0,'all':0}
all_ = {'set0':0,'set1':0,'others':0,'all':0}
unseen_perf = {name:[] for name in bins[1]}
for name in relation_type_results:
if name in bins[0]:
all_['set0']+= float(relation_type_results[name][2])
text_cor['set0'] += relation_type_results[name][0]
box_cor['set0'] += relation_type_results[name][1]
if name in bins[1]:
unseen_perf[name].append([relation_type_results[name][0], relation_type_results[name][1], relation_type_results[name][2]])
all_['set1']+= float(relation_type_results[name][2])
text_cor['set1'] += relation_type_results[name][0]
box_cor['set1'] += relation_type_results[name][1]
if name not in bins[0]+bins[1]:
all_['others']+= float(relation_type_results[name][2])
text_cor['others'] += relation_type_results[name][0]
box_cor['others'] += relation_type_results[name][1]
all_['all']+= float(relation_type_results[name][2])
text_cor['all'] += relation_type_results[name][0]
box_cor['all'] += relation_type_results[name][1]
print('Underseen classes text and box accuracy: ', text_cor['set0']/all_['set0'], box_cor['set0']/all_['set0'])
print('Unseen classes text and box accuracy: ', text_cor['set1']/all_['set1'], box_cor['set1']/all_['set1'])
print('all classes text and box accuracy: ', text_cor['all']/all_['all'], box_cor['all']/all_['all'])
print('underseen + unseen classes text and box accuracy: ', (text_cor['set1'] + text_cor['set0'])/(all_['set1']+all_['set0']), (box_cor['set1'] + box_cor['set0'])/(all_['set1'] + all_['set0']))
print('others classes text and box accuracy: ', text_cor['others']/all_['others'], box_cor['others']/all_['others'])
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--results_folder', default='checkpoints_folder/oidv6_results/')
parser.add_argument('--config', default='configs/relation_grounding.yaml')
parser.add_argument('--mode', default='syn', choices=['syn', 'exact'], help='predicted synonyms|exact text as correct')
parser.add_argument('--topk', default=3, type=int) # consider top-k predictions
parser.add_argument('--box_threshold', default=0.5) # if iou(gt_box, predicted_box) >= 0.5, the prediction is correct
parser.add_argument('--report_unseen', default=False, type=bool)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
evaluate(args, config)