-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_liqe_single.py
282 lines (212 loc) · 9.39 KB
/
train_liqe_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import torch
import torch.nn as nn
import numpy as np
#from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import clip
import random
import time
from MNL_Loss import Fidelity_Loss, loss_m4, Multi_Fidelity_Loss, Fidelity_Loss_distortion
import scipy.stats
from utils import set_dataset_qonly, _preprocess2, _preprocess3, convert_models_to_fp32
import torch.nn.functional as F
from itertools import product
import os
import pickle
from weight_methods import WeightMethods
##############################textual template####################################
qualitys = ['bad', 'poor', 'fair', 'good', 'perfect']
##############################general setup####################################
koniq10k_set = '../IQA_Database/koniq-10k/1024x768'
seed = 20200626
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
initial_lr = 5e-6
num_epoch = 6
bs = 64
train_patch = 3
loss_img2 = Fidelity_Loss_distortion()
loss_scene = Multi_Fidelity_Loss()
joint_texts = torch.cat([clip.tokenize(f"a photo with {c} quality") for c in qualitys]).to(device)
##############################general setup####################################
preprocess2 = _preprocess2()
preprocess3 = _preprocess3()
opt = 0
def freeze_model(opt):
model.logit_scale.requires_grad = False
if opt == 0: #do nothing
return
elif opt == 1: # freeze text encoder
for p in model.token_embedding.parameters():
p.requires_grad = False
for p in model.transformer.parameters():
p.requires_grad = False
model.positional_embedding.requires_grad = False
model.text_projection.requires_grad = False
for p in model.ln_final.parameters():
p.requires_grad = False
elif opt == 2: # freeze visual encoder
for p in model.visual.parameters():
p.requires_grad = False
elif opt == 3:
for p in model.parameters():
p.requires_grad =False
def do_batch(x, text):
batch_size = x.size(0)
num_patch = x.size(1)
x = x.view(-1, x.size(2), x.size(3), x.size(4))
logits_per_image, logits_per_text = model.forward(x, text)
logits_per_image = logits_per_image.view(batch_size, num_patch, -1)
logits_per_text = logits_per_text.view(-1, batch_size, num_patch)
logits_per_image = logits_per_image.mean(1)
logits_per_text = logits_per_text.mean(2)
logits_per_image = F.softmax(logits_per_image, dim=1)
return logits_per_image, logits_per_text
def train(model, best_result, best_epoch, srcc_dict):
start_time = time.time()
beta = 0.9
running_loss = 0 if epoch == 0 else train_loss[-1]
running_duration = 0.0
num_steps_per_epoch = 200
local_counter = epoch * num_steps_per_epoch + 1
model.eval()
loaders = []
for loader in train_loaders:
loaders.append(iter(loader))
print(optimizer.state_dict()['param_groups'][0]['lr'])
if optimizer.state_dict()['param_groups'][0]['lr'] == 0:
scheduler.step()
print(optimizer.state_dict()['param_groups'][0]['lr'])
for step in range(num_steps_per_epoch):
#total_loss = 0
all_batch = []
gmos_batch = []
num_sample_per_task = []
for dataset_idx, loader in enumerate(loaders, 0):
try:
sample_batched = next(loader)
except StopIteration:
loader = iter(train_loaders[dataset_idx])
sample_batched = next(loader)
loaders[dataset_idx] = loader
x, gmos = sample_batched['I'], sample_batched['mos']
x = x.to(device)
gmos = gmos.to(device)
gmos_batch.append(gmos)
num_sample_per_task.append(x.size(0))
# preserve all samples into a batch, will be used for optimization of scene and distortion type later
all_batch.append(x)
all_batch = torch.cat(all_batch, dim=0)
gmos_batch = torch.cat(gmos_batch, dim=0)
optimizer.zero_grad()
logits_per_image, _ = do_batch(all_batch, joint_texts)
logits_per_image = logits_per_image.view(-1, len(qualitys))
logits_quality = 1 * logits_per_image[:, 0] + 2 * logits_per_image[:, 1] + 3 * logits_per_image[:, 2] + \
4 * logits_per_image[:, 3] + 5 * logits_per_image[:, 4]
total_loss = loss_m4(logits_quality, num_sample_per_task, gmos_batch.detach()).mean()
total_loss = total_loss
total_loss.backward()
if device == "cpu":
optimizer.step()
else:
convert_models_to_fp32(model)
optimizer.step()
clip.model.convert_weights(model)
# statistics
running_loss = beta * running_loss + (1 - beta) * total_loss.data.item()
loss_corrected = running_loss / (1 - beta ** local_counter)
current_time = time.time()
duration = current_time - start_time
running_duration = beta * running_duration + (1 - beta) * duration
duration_corrected = running_duration / (1 - beta ** local_counter)
examples_per_sec = x.size(0) / duration_corrected
format_str = ('(E:%d, S:%d / %d) [Loss = %.4f] (%.1f samples/sec; %.3f '
'sec/batch)')
print(format_str % (epoch, step + 1, num_steps_per_epoch, loss_corrected,
examples_per_sec, duration_corrected))
local_counter += 1
start_time = time.time()
train_loss.append(loss_corrected)
all_result = {'val':{}, 'test':{}}
if (epoch >= 0):
srcc1 = eval(koniq10k_val_loader, phase='val', dataset='koniq10k')
srcc11 = eval(koniq10k_test_loader, phase='test', dataset='koniq10k')
srcc_avg = srcc1
current_avg = srcc_avg
if current_avg > best_result['avg']:
print('**********New overall best!**********')
best_epoch['avg'] = epoch
best_result['avg'] = current_avg
srcc_dict['koniq10k'] = srcc11
ckpt_name = os.path.join('checkpoints', str(session+1), 'liqe_qonly.pt')
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'all_results':all_result
}, ckpt_name) # just change to your preferred folder/filename
return best_result, best_epoch, srcc_dict, all_result
def eval(loader, phase, dataset):
model.eval()
q_mos = []
q_hat = []
for step, sample_batched in enumerate(loader, 0):
x, gmos = sample_batched['I'], sample_batched['mos']
x = x.to(device)
#q_mos.append(gmos.data.numpy())
q_mos = q_mos + gmos.cpu().tolist()
# Calculate features
with torch.no_grad():
logits_per_image, _ = do_batch(x, joint_texts)
logits_per_image = logits_per_image.view(-1, len(qualitys))
logits_quality = logits_per_image
quality_preds = 1 * logits_quality[:, 0] + 2 * logits_quality[:, 1] + 3 * logits_quality[:, 2] + \
4 * logits_quality[:, 3] + 5 * logits_quality[:, 4]
q_hat = q_hat + quality_preds.cpu().tolist()
srcc = scipy.stats.mstats.spearmanr(x=q_mos, y=q_hat)[0]
print_text = dataset + ' ' + phase + ' finished'
print(print_text)
return srcc
num_workers = 8
for session in range(0,1):
model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
optimizer = torch.optim.AdamW(
model.parameters(), lr=initial_lr,
weight_decay=0.001)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=5)
train_loss = []
start_epoch = 0
freeze_model(opt)
best_result = 0
best_epoch = 0
# avg
srcc_dict = {'koniq10k':0.0}
koniq10k_train_csv = os.path.join('../IQA_Database/koniq-10k/meta_info_KonIQ10kDataset.csv')
koniq10k_val_csv = os.path.join('../IQA_Database/koniq-10k/meta_info_KonIQ10kDataset.csv')
koniq10k_test_csv = os.path.join('../IQA_Database/koniq-10k/meta_info_KonIQ10kDataset.csv')
koniq10k_train_loader = set_dataset_qonly(koniq10k_train_csv, 32, koniq10k_set, num_workers, preprocess3,
train_patch, False, set=0)
koniq10k_val_loader = set_dataset_qonly(koniq10k_val_csv, 32, koniq10k_set, num_workers, preprocess2,
15, True, set=1)
koniq10k_test_loader = set_dataset_qonly(koniq10k_test_csv, 32, koniq10k_set, num_workers, preprocess2,
15, True, set=2)
train_loaders = [koniq10k_train_loader]
#train_loaders = [koniq10k_train_loader]
result_pkl = {}
for epoch in range(0, num_epoch):
best_result, best_epoch, srcc_dict, all_result = train(model, best_result, best_epoch, srcc_dict)
scheduler.step()
result_pkl[str(epoch)] = all_result
print('...............current average best...............')
print('best average epoch:{}'.format(best_epoch['avg']))
print('best average result:{}'.format(best_result['avg']))
for dataset in srcc_dict.keys():
print_text = dataset + ':' + 'srcc:{}'.format(srcc_dict[dataset])
print(print_text)
pkl_name = os.path.join('checkpoints', str(session+1), 'all_results.pkl')
with open(pkl_name, 'wb') as f:
pickle.dump(result_pkl, f)