-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCustomDataset.py
359 lines (301 loc) · 13.1 KB
/
CustomDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import torch
from torch.utils.data import Dataset
from sklearn.preprocessing import StandardScaler
import joblib
import os
import numpy as np
class TrainDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_length, scaler_save_path, mode='train'):
self.data = dataframe.reset_index(drop=True)
self.tokenizer = tokenizer
self.max_length = max_length
self.mode = mode # 'train'、'val' 或 'test'
self.feature_name_mapping = {
'Defect Description': 'defect_description',
'Component': 'component',
}
# Text feature names
self.text_features = [
'Defect Description',
'Component',
]
# Group for "defect_dimension_numerical"
self.dimension_numerical_features = [
'Defect Width',
'Defect Area',
'Defect Length',
'Dimension Specified'
]
# Group for "defect_number"
self.defect_number_features = [
'Defect Quantity',
'Quantity Specified'
]
# Labels
self.labels = self.data['Defect Level'].values
# Initialize scalers
self.scalers = {}
# For numerical features, we need to fit scalers on training data and load scalers on validation/test data
numerical_features = self.dimension_numerical_features + self.defect_number_features
for feature_name in numerical_features:
scaler_filename = os.path.join(scaler_save_path, f'{feature_name}_scaler.pkl')
if self.mode == 'train':
# Fit the scaler and save it
scaler = StandardScaler()
# Reshape the data for the scaler as it expects 2D input
feature_data = self.data[feature_name].values.reshape(-1, 1)
scaler.fit(feature_data)
self.scalers[feature_name] = scaler
# Save the scaler for later use
joblib.dump(scaler, scaler_filename)
else:
# Load the scaler
scaler = joblib.load(scaler_filename)
self.scalers[feature_name] = scaler
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data.iloc[idx]
# Tokenize text features and map keys to English
encoded_inputs = {}
for feature_name in self.text_features:
text = str(sample[feature_name])
encoding = self.tokenizer(
text,
add_special_tokens=True,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
# Map Chinese feature name to English
feature_name = self.feature_name_mapping[feature_name]
# Flatten tensors and use English keys
encoded_inputs[f'input_ids_{feature_name}'] = encoding['input_ids'].squeeze(0)
encoded_inputs[f'attention_mask_{feature_name}'] = encoding['attention_mask'].squeeze(0)
# Prepare "defect_dimension_numerical" group
defect_dimension_numerical = []
for feature_name in self.dimension_numerical_features:
value = sample[feature_name]
# Reshape to (1, 1) for scaler
value_array = np.array([[value]])
scaled_value = self.scalers[feature_name].transform(value_array)[0][0]
defect_dimension_numerical.append(scaled_value)
defect_dimension_numerical = torch.tensor(defect_dimension_numerical, dtype=torch.float)
# Prepare "defect_number" group
defect_number = []
for feature_name in self.defect_number_features:
value = sample[feature_name]
# Reshape to (1, 1) for scaler
value_array = np.array([[value]])
scaled_value = self.scalers[feature_name].transform(value_array)[0][0]
defect_number.append(scaled_value)
defect_number = torch.tensor(defect_number, dtype=torch.float)
# Prepare label
label = torch.tensor(self.labels[idx], dtype=torch.long)
# Combine all features into a single dictionary
item = {
**encoded_inputs,
'defect_dimension_numerical': defect_dimension_numerical,
'defect_number': defect_number,
'labels': label,
'idx': idx
}
return item
class TestDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_length, scaler_save_path, mode='train'):
self.data = dataframe.reset_index(drop=True)
self.tokenizer = tokenizer
self.max_length = max_length
self.mode = mode # 'train'、'val' 或 'test'
self.feature_name_mapping = {
'Defect Description': 'defect_description',
'Component': 'component',
}
# Text feature names
self.text_features = [
'Defect Description',
'Component',
]
# Group for "defect_dimension_numerical"
self.dimension_numerical_features = [
'Defect Width',
'Defect Area',
'Defect Length',
'Dimension Specified'
]
# Group for "defect_number"
self.defect_number_features = [
'Defect Quantity',
'Quantity Specified'
]
# Labels
self.labels = self.data['Defect Level'].values
self.ambiguous_labels = self.data['Ambiguous'].values
# Initialize scalers
self.scalers = {}
# For numerical features, we need to fit scalers on training data and load scalers on validation/test data
numerical_features = self.dimension_numerical_features + self.defect_number_features
for feature_name in numerical_features:
scaler_filename = os.path.join(scaler_save_path, f'{feature_name}_scaler.pkl')
if self.mode == 'train':
# Fit the scaler and save it
scaler = StandardScaler()
# Reshape the data for the scaler as it expects 2D input
feature_data = self.data[feature_name].values.reshape(-1, 1)
scaler.fit(feature_data)
self.scalers[feature_name] = scaler
# Save the scaler for later use
joblib.dump(scaler, scaler_filename)
else:
# Load the scaler
scaler = joblib.load(scaler_filename)
self.scalers[feature_name] = scaler
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data.iloc[idx]
# Tokenize text features and map keys to English
encoded_inputs = {}
for feature_name in self.text_features:
text = str(sample[feature_name])
encoding = self.tokenizer(
text,
add_special_tokens=True,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
# Map Chinese feature name to English
feature_name = self.feature_name_mapping[feature_name]
# Flatten tensors and use English keys
encoded_inputs[f'input_ids_{feature_name}'] = encoding['input_ids'].squeeze(0)
encoded_inputs[f'attention_mask_{feature_name}'] = encoding['attention_mask'].squeeze(0)
# Prepare "defect_dimension_numerical" group
defect_dimension_numerical = []
for feature_name in self.dimension_numerical_features:
value = sample[feature_name]
# Reshape to (1, 1) for scaler
value_array = np.array([[value]])
scaled_value = self.scalers[feature_name].transform(value_array)[0][0]
defect_dimension_numerical.append(scaled_value)
defect_dimension_numerical = torch.tensor(defect_dimension_numerical, dtype=torch.float)
# Prepare "defect_number" group
defect_number = []
for feature_name in self.defect_number_features:
value = sample[feature_name]
# Reshape to (1, 1) for scaler
value_array = np.array([[value]])
scaled_value = self.scalers[feature_name].transform(value_array)[0][0]
defect_number.append(scaled_value)
defect_number = torch.tensor(defect_number, dtype=torch.float)
# Prepare label
label = torch.tensor(
[self.labels[idx], self.ambiguous_labels[idx]], dtype=torch.long
)
# Combine all features into a single dictionary
item = {
**encoded_inputs,
'defect_dimension_numerical': defect_dimension_numerical,
'defect_number': defect_number,
'labels': label,
'idx': idx
}
return item
class PredictDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_length, scaler_save_path, mode='test'):
self.data = dataframe.reset_index(drop=True)
self.tokenizer = tokenizer
self.max_length = max_length
self.mode = mode # 'train'、'val' 或 'test'
self.feature_name_mapping = {
'Defect Description': 'defect_description',
'Component': 'component',
}
# Text feature names
self.text_features = [
'Defect Description',
'Component',
]
# Group for "defect_dimension_numerical"
self.dimension_numerical_features = [
'Defect Width',
'Defect Area',
'Defect Length',
'Dimension Specified'
]
# Group for "defect_number"
self.defect_number_features = [
'Defect Quantity',
'Quantity Specified'
]
# Initialize scalers
self.scalers = {}
# For numerical features, we need to fit scalers on training data and load scalers on validation/test data
numerical_features = self.dimension_numerical_features + self.defect_number_features
for feature_name in numerical_features:
scaler_filename = os.path.join(scaler_save_path, f'{feature_name}_scaler.pkl')
if self.mode == 'train':
# Fit the scaler and save it
scaler = StandardScaler()
# Reshape the data for the scaler as it expects 2D input
feature_data = self.data[feature_name].values.reshape(-1, 1)
scaler.fit(feature_data)
self.scalers[feature_name] = scaler
# Save the scaler for later use
joblib.dump(scaler, scaler_filename)
else:
# Load the scaler
scaler = joblib.load(scaler_filename)
self.scalers[feature_name] = scaler
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data.iloc[idx]
# Tokenize text features and map keys to English
encoded_inputs = {}
for feature_name in self.text_features:
text = str(sample[feature_name])
encoding = self.tokenizer(
text,
add_special_tokens=True,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
# Map Chinese feature name to English
feature_name = self.feature_name_mapping[feature_name]
# Flatten tensors and use English keys
encoded_inputs[f'input_ids_{feature_name}'] = encoding['input_ids'].squeeze(0)
encoded_inputs[f'attention_mask_{feature_name}'] = encoding['attention_mask'].squeeze(0)
# Prepare "defect_dimension_numerical" group
defect_dimension_numerical = []
for feature_name in self.dimension_numerical_features:
value = sample[feature_name]
# Reshape to (1, 1) for scaler
value_array = np.array([[value]])
scaled_value = self.scalers[feature_name].transform(value_array)[0][0]
defect_dimension_numerical.append(scaled_value)
defect_dimension_numerical = torch.tensor(defect_dimension_numerical, dtype=torch.float)
# Prepare "defect_number" group
defect_number = []
for feature_name in self.defect_number_features:
value = sample[feature_name]
# Reshape to (1, 1) for scaler
value_array = np.array([[value]])
scaled_value = self.scalers[feature_name].transform(value_array)[0][0]
defect_number.append(scaled_value)
defect_number = torch.tensor(defect_number, dtype=torch.float)
# Combine all features into a single dictionary
item = {
**encoded_inputs,
'defect_dimension_numerical': defect_dimension_numerical,
'defect_number': defect_number,
'idx': idx
}
return item