Skip to content

Commit

Permalink
x86 avx512 optimization (#3691)
Browse files Browse the repository at this point in the history
* convolution sgemm pack16to1

* convolution sgemm pack4to16

* eltwise avx512
  • Loading branch information
nihui authored Apr 11, 2022
1 parent 9298d05 commit 3d169b3
Show file tree
Hide file tree
Showing 7 changed files with 1,421 additions and 432 deletions.
65 changes: 65 additions & 0 deletions src/layer/x86/convolution_1x1_pack16to1.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

static void conv1x1s1_sgemm_pack16to1_avx512(const Mat& bottom_blob, Mat& top_blob, const Mat& kernel, const Mat& _bias, const Option& opt)
{
int w = bottom_blob.w;
int h = bottom_blob.h;
const int size = w * h;

Mat bottom_im2col = bottom_blob;
bottom_im2col.w = size;
bottom_im2col.h = 1;

im2col_sgemm_pack16to1_avx512(bottom_im2col, top_blob, kernel, _bias, opt);
}

static void conv1x1s2_sgemm_pack16to1_avx512(const Mat& bottom_blob, Mat& top_blob, const Mat& kernel, const Mat& _bias, const Option& opt)
{
int w = bottom_blob.w;
int channels = bottom_blob.c;
size_t elemsize = bottom_blob.elemsize;
int elempack = bottom_blob.elempack;

int outw = top_blob.w;
int outh = top_blob.h;

const int tailstep = (w - 2 * outw + w) * 16;

Mat bottom_blob_shrinked;
bottom_blob_shrinked.create(outw, outh, channels, elemsize, elempack, opt.workspace_allocator);

#pragma omp parallel for num_threads(opt.num_threads)
for (int p = 0; p < channels; p++)
{
const float* r0 = bottom_blob.channel(p);
float* outptr = bottom_blob_shrinked.channel(p);

for (int i = 0; i < outh; i++)
{
for (int j = 0; j < outw; j++)
{
__m512 _v = _mm512_load_ps(r0);
_mm512_store_ps(outptr, _v);

r0 += 32;
outptr += 16;
}

r0 += tailstep;
}
}

conv1x1s1_sgemm_pack16to1_avx512(bottom_blob_shrinked, top_blob, kernel, _bias, opt);
}
66 changes: 66 additions & 0 deletions src/layer/x86/convolution_1x1_pack4to16.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

static void conv1x1s1_sgemm_pack4to16_avx512(const Mat& bottom_blob, Mat& top_blob, const Mat& kernel, const Mat& _bias, const Option& opt)
{
int w = bottom_blob.w;
int h = bottom_blob.h;
const int size = w * h;

Mat bottom_im2col = bottom_blob;
bottom_im2col.w = size;
bottom_im2col.h = 1;

im2col_sgemm_pack4to16_avx512(bottom_im2col, top_blob, kernel, _bias, opt);
}

static void conv1x1s2_sgemm_pack4to16_avx512(const Mat& bottom_blob, Mat& top_blob, const Mat& kernel, const Mat& _bias, const Option& opt)
{
int w = bottom_blob.w;
int channels = bottom_blob.c;
size_t elemsize = bottom_blob.elemsize;
int elempack = bottom_blob.elempack;

int outw = top_blob.w;
int outh = top_blob.h;

const int tailstep = (w - 2 * outw + w) * 4;

Mat bottom_blob_shrinked;
bottom_blob_shrinked.create(outw, outh, channels, elemsize, elempack, opt.workspace_allocator);

#pragma omp parallel for num_threads(opt.num_threads)
for (int p = 0; p < channels; p++)
{
const float* r0 = bottom_blob.channel(p);
float* outptr = bottom_blob_shrinked.channel(p);

for (int i = 0; i < outh; i++)
{
int j = 0;
for (; j < outw; j++)
{
__m128 _v = _mm_load_ps(r0);
_mm_store_ps(outptr, _v);

r0 += 8;
outptr += 4;
}

r0 += tailstep;
}
}

conv1x1s1_sgemm_pack4to16_avx512(bottom_blob_shrinked, top_blob, kernel, _bias, opt);
}
Loading

0 comments on commit 3d169b3

Please sign in to comment.