Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BYOC][ACL] Support add operation #6532

Merged
merged 3 commits into from
Oct 11, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions docs/deploy/arm_compute_lib.rst
Original file line number Diff line number Diff line change
Expand Up @@ -234,6 +234,10 @@ Operator support
+----------------------+-------------------------------------------------------------------------+
| maximum | fp32 |
+----------------------+-------------------------------------------------------------------------+
| add | fp32 |
+----------------------+-------------------------------------------------------------------------+
| qnn.add | uint8 |
+----------------------+-------------------------------------------------------------------------+

.. note::
A composite operator is a series of operators that map to a single Arm Compute Library operator. You can view this
Expand Down
20 changes: 20 additions & 0 deletions python/tvm/relay/op/contrib/arm_compute_lib.py
Original file line number Diff line number Diff line change
Expand Up @@ -345,3 +345,23 @@ def maximum(attrs, args):
type_a = args[0].checked_type
type_b = args[0].checked_type
return (type_a.dtype == "float32") and (type_b.dtype == "float32")


@tvm.ir.register_op_attr("add", "target.arm_compute_lib")
def add(attrs, args):
"""Check if the external ACL codegen for add should be used."""
for typ in [args[0].checked_type, args[1].checked_type]:
if typ.dtype != "float32":
return False

return True


@tvm.ir.register_op_attr("qnn.add", "target.arm_compute_lib")
def qnn_add(attrs, args):
"""Check if the external ACL codegen for add should be used."""
for typ in [args[0].checked_type, args[1].checked_type]:
if typ.dtype != "uint8":
return False

return True
42 changes: 36 additions & 6 deletions src/runtime/contrib/arm_compute_lib/acl_runtime.cc
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@

#ifdef TVM_GRAPH_RUNTIME_ARM_COMPUTE_LIB
#include <arm_compute/core/Types.h>
#include <arm_compute/runtime/NEON/functions/NEArithmeticAddition.h>
#include <arm_compute/runtime/NEON/functions/NEConvolutionLayer.h>
#include <arm_compute/runtime/NEON/functions/NEElementwiseOperations.h>
#include <arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h>
Expand Down Expand Up @@ -142,6 +143,8 @@ class ACLRuntime : public JSONRuntimeBase {
CreateReshapeLayer(&layer_, node);
} else if ("maximum" == op_name) {
CreateMaximumLayer(&layer_, node);
} else if ("add" == op_name || "qnn.add" == op_name) {
CreateAddLayer(&layer_, node);
} else {
LOG(FATAL) << "Unsupported op: " << op_name;
}
Expand Down Expand Up @@ -417,6 +420,36 @@ class ACLRuntime : public JSONRuntimeBase {
function->configure(&layer->inputs[0], &layer->inputs[1], &layer->outputs[0]);
layer->function = function;
}
/*!
* \brief Creates an add/qnn.add layer
*
* \param layer The ACL layer to build. Containing inputs, outputs and the ACL function.
* \param node The JSON representation of the operator.
*/
void CreateAddLayer(CachedLayer* layer, const JSONGraphNode& node) {
auto op_name = node.GetOpName();
if ("add" == op_name) {
layer->inputs.push_back(MakeACLTensorFromJSONEntry(node.GetInputs()[0]));
layer->inputs.push_back(MakeACLTensorFromJSONEntry(node.GetInputs()[1]));
layer->outputs.push_back(MakeACLTensorFromJSONNode(node));
} else if ("qnn.add" == op_name) {
layer->inputs.push_back(MakeACLTensorFromJSONEntry(node.GetInputs()[0], &node.GetInputs()[2],
&node.GetInputs()[3]));
layer->inputs.push_back(MakeACLTensorFromJSONEntry(node.GetInputs()[1], &node.GetInputs()[4],
&node.GetInputs()[5]));
layer->outputs.push_back(
MakeACLTensorFromJSONNode(node, &node.GetInputs()[6], &node.GetInputs()[7]));
} else {
throw std::runtime_error("Unsupported form of add op: " + op_name);
}

auto f = std::make_shared<arm_compute::NEArithmeticAddition>();

// SATURATE is used as add_QASYMM8_QASYMM8_QASYMM8 always saturates result
f->configure(&layer->inputs[0], &layer->inputs[1], &layer->outputs[0],
arm_compute::ConvertPolicy::SATURATE);
layer->function = f;
}

/*! \brief Allow ACL functions to request auxiliary memory from TVM. */
ACLAllocator allocator_;
Expand All @@ -437,18 +470,15 @@ class ACLRuntime : public JSONRuntimeBase {
}
#endif
};

runtime::Module ACLRuntimeCreate(const String& symbol_name, const String& graph_json,
const Array<String>& const_names) {
auto n = make_object<ACLRuntime>(symbol_name, graph_json, const_names);
return runtime::Module(n);
}

TVM_REGISTER_GLOBAL("runtime.arm_compute_lib_runtime_create").set_body_typed(ACLRuntimeCreate);

TVM_REGISTER_GLOBAL("runtime.module.loadbinary_arm_compute_lib")
.set_body_typed(JSONRuntimeBase::LoadFromBinary<ACLRuntime>);

} // namespace contrib
} // namespace runtime
} // namespace tvm
} // namespace contrib
} // namespace runtime
} // namespace tvm
133 changes: 133 additions & 0 deletions tests/python/contrib/test_arm_compute_lib/test_add.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Arm Compute Library integration reshape tests."""

import numpy as np

import tvm
import tvm.testing
from tvm import relay

from test_arm_compute_lib.infrastructure import (
skip_runtime_test,
skip_codegen_test,
build_and_run,
verify,
verify_codegen,
)
from test_arm_compute_lib.infrastructure import Device

_qnn_params = {
"lhs_scale": relay.const(0.0156863, "float32"),
"lhs_zero_point": relay.const(127, "int32"),
"rhs_scale": relay.const(0.0117647, "float32"),
"rhs_zero_point": relay.const(85, "int32"),
"output_scale": relay.const(0.0235294, "float32"),
"output_zero_point": relay.const(128, "int32"),
}


def _get_model(shape, dtype, var_names, op, op_params):
a = relay.var(next(var_names), shape=shape, dtype=dtype)
b = relay.var(next(var_names), shape=shape, dtype=dtype)
return op(a, b, **op_params)


def _get_expected_codegen(shape, dtype, op_name, qnn_params):
input_a = {"op": "input", "name": "", "attrs": {"shape": [[list(shape)]], "dtype": [[dtype]]}}
input_b = {"op": "input", "name": "", "attrs": {"shape": [[list(shape)]], "dtype": [[dtype]]}}
input_qnn = [
{
"op": "const",
"name": "",
"attrs": {
"shape": [[list(qnn_params[_].data.shape)]],
"dtype": [[qnn_params[_].data.dtype]],
},
}
for _ in qnn_params
]
inputs = [input_a, input_b, *input_qnn]
node = {
"op": "kernel",
"name": op_name,
"inputs": [[_, 0, 0] for _ in range(len(inputs))],
"attrs": {
"num_inputs": str(len(inputs)),
"num_outputs": "1",
"shape": [[list(shape)]],
"dtype": [[dtype]],
},
}

return [*inputs, node]


def test_runtime_add():
Device.load("test_config.json")

if skip_runtime_test():
return

device = Device()
np.random.seed(0)

for dtype, low, high, atol, rtol, op, op_params in [
("float32", -127, 128, 1e-7, 1e-7, relay.add, {}),
("uint8", 0, 255, 0.0, 1.0, relay.qnn.op.add, _qnn_params),
]:
shape = (2, 2)
for inputs in [
{
"a": tvm.nd.array(np.random.uniform(low, high, shape).astype(dtype)),
"b": tvm.nd.array(np.random.uniform(low, high, shape).astype(dtype)),
}
]:
outputs = []
func = _get_model(shape, dtype, iter(inputs), op, op_params)
for acl in [True, False]:
outputs.append(build_and_run(func, inputs, 1, None, device, enable_acl=acl)[0])

config = {
"shape": shape,
"dtype": dtype,
"inputs": inputs,
"operation": op,
"op_params": op_params,
}

verify(outputs, atol=atol, rtol=rtol, config=config, verify_saturation=False)


def test_codegen_add():
if skip_codegen_test():
return

inputs = {"a", "b"}
for dtype, op_name, op, qnn_params in [
("float32", "add", relay.add, {}),
("uint8", "qnn.add", relay.qnn.op.add, _qnn_params),
]:
for shape in [(1, 1), (2, 2, 2), (3, 3, 3, 3)]:
func = _get_model(shape, dtype, iter(inputs), op, qnn_params)
exp_codegen = _get_expected_codegen(shape, dtype, op_name, qnn_params)
verify_codegen(func, exp_codegen, 1)


if __name__ == "__main__":
test_codegen_add()
test_runtime_add()