Vehicle Detection Project
The goals / steps of this project are the following:
- Perform a Histogram of Oriented Gradients (HOG) feature extraction on a labeled training set of images and train a classifier Linear SVM classifier
- Optionally, you can also apply a color transform and append binned color features, as well as histograms of color, to your HOG feature vector.
- Note: for those first two steps don't forget to normalize your features and randomize a selection for training and testing.
- Implement a sliding-window technique and use your trained classifier to search for vehicles in images.
- Run your pipeline on a video stream (start with the test_video.mp4 and later implement on full project_video.mp4) and create a heat map of recurring detections frame by frame to reject outliers and follow detected vehicles.
- Estimate a bounding box for vehicles detected.
I started by reading in all the vehicle
and non-vehicle
images. Here is an example of one of each of the vehicle
and non-vehicle
classes:
I then explored different color spaces and different skimage.hog()
parameters (orientations
, pixels_per_cell
, and cells_per_block
). I grabbed random images from each of the two classes and displayed them to get a feel for what the skimage.hog()
output looks like.
I tried various combinations of parameters and here is my final HOG parameters using the YCrCb
color space.
- orientations=12
- pixels_per_cell=(8, 8)
- cells_per_block=(2, 2)
I selecting the parameters with considering of the accuracy. Usually, I will pick up the best accuracy
Here I'll talk about the approach I took, what techniques I used, what worked and why, where the pipeline might fail and how I might improve it if I were going to pursue this project further.