-
Notifications
You must be signed in to change notification settings - Fork 676
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add OpenTelemetry Python SDK Benchmarks (pytest) benchmark result for 4…
- Loading branch information
github-action-benchmark
committed
Nov 11, 2024
1 parent
c2a7d10
commit 7b7bd72
Showing
1 changed file
with
347 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
window.BENCHMARK_DATA = { | ||
"lastUpdate": 1731119646212, | ||
"lastUpdate": 1731341571383, | ||
"repoUrl": "https://github.com/open-telemetry/opentelemetry-python", | ||
"entries": { | ||
"OpenTelemetry Python SDK Benchmarks - Python 3.11 - SDK": [ | ||
|
@@ -80908,6 +80908,352 @@ window.BENCHMARK_DATA = { | |
"extra": "mean: 18.23312028547543 usec\nrounds: 20112" | ||
} | ||
] | ||
}, | ||
{ | ||
"commit": { | ||
"author": { | ||
"email": "[email protected]", | ||
"name": "Tammy Baylis", | ||
"username": "tammy-baylis-swi" | ||
}, | ||
"committer": { | ||
"email": "[email protected]", | ||
"name": "GitHub", | ||
"username": "web-flow" | ||
}, | ||
"distinct": true, | ||
"id": "47b0541a73c791a7a2f49ead18495353c8caa9fb", | ||
"message": "Add generate-workflows info to CONTRIBUTING (#4266)", | ||
"timestamp": "2024-11-11T08:11:40-08:00", | ||
"tree_id": "be3051f368a66f167f33feef8424c8f40ac95954", | ||
"url": "https://github.com/open-telemetry/opentelemetry-python/commit/47b0541a73c791a7a2f49ead18495353c8caa9fb" | ||
}, | ||
"date": 1731341570603, | ||
"tool": "pytest", | ||
"benches": [ | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[1]", | ||
"value": 18.0551556710467, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.005094278473973256", | ||
"extra": "mean: 55.38584203976723 msec\nrounds: 18" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[10]", | ||
"value": 17.390853703082144, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.006567469760713883", | ||
"extra": "mean: 57.5014899827932 msec\nrounds: 19" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[100]", | ||
"value": 17.939316581376197, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.009654692054468245", | ||
"extra": "mean: 55.74348361955749 msec\nrounds: 18" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[1000]", | ||
"value": 17.2963429036232, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.012929009238898639", | ||
"extra": "mean: 57.81569003182299 msec\nrounds: 17" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[0-delta]", | ||
"value": 373287.2433234182, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.83371882969599e-7", | ||
"extra": "mean: 2.6789021534646826 usec\nrounds: 15725" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[1-delta]", | ||
"value": 369550.7847526087, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.30148861175617e-7", | ||
"extra": "mean: 2.7059880299521972 usec\nrounds: 47059" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[3-delta]", | ||
"value": 352494.1358803039, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.265088591399088e-7", | ||
"extra": "mean: 2.836926627169676 usec\nrounds: 46296" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[5-delta]", | ||
"value": 324160.8216970201, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.337944044926423e-7", | ||
"extra": "mean: 3.0848885277526206 usec\nrounds: 45908" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[10-delta]", | ||
"value": 292536.7984785891, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.508093344139784e-7", | ||
"extra": "mean: 3.4183733643109186 usec\nrounds: 52514" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[0-cumulative]", | ||
"value": 385759.3783485228, | ||
"unit": "iter/sec", | ||
"range": "stddev: 4.96359542640906e-7", | ||
"extra": "mean: 2.5922895362417555 usec\nrounds: 32293" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[1-cumulative]", | ||
"value": 379936.8019530468, | ||
"unit": "iter/sec", | ||
"range": "stddev: 4.916334917937992e-7", | ||
"extra": "mean: 2.6320166797729208 usec\nrounds: 67553" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[3-cumulative]", | ||
"value": 358183.6253513845, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.46036559990891e-7", | ||
"extra": "mean: 2.7918640865254023 usec\nrounds: 67668" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[5-cumulative]", | ||
"value": 329499.8587582587, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.953436874372902e-7", | ||
"extra": "mean: 3.0349026666310692 usec\nrounds: 62236" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[10-cumulative]", | ||
"value": 292020.6300365033, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.101773555297222e-7", | ||
"extra": "mean: 3.424415596511101 usec\nrounds: 55594" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[0]", | ||
"value": 392547.8236803247, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.46127072830489e-7", | ||
"extra": "mean: 2.5474603084651415 usec\nrounds: 25480" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[1]", | ||
"value": 384347.22063922277, | ||
"unit": "iter/sec", | ||
"range": "stddev: 4.5031491774645023e-7", | ||
"extra": "mean: 2.6018140532845826 usec\nrounds: 35284" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[3]", | ||
"value": 359021.82089287986, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.352278393006419e-7", | ||
"extra": "mean: 2.7853460202308056 usec\nrounds: 61600" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[5]", | ||
"value": 332799.87306736346, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.381366869474484e-7", | ||
"extra": "mean: 3.0048088383663103 usec\nrounds: 62110" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[10]", | ||
"value": 293005.2843217678, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.380725569833431e-7", | ||
"extra": "mean: 3.412907730707806 usec\nrounds: 61696" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[0]", | ||
"value": 317732.3793398403, | ||
"unit": "iter/sec", | ||
"range": "stddev: 7.142678144396394e-7", | ||
"extra": "mean: 3.147302777506411 usec\nrounds: 256" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[1]", | ||
"value": 317750.399001847, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.856603672084481e-7", | ||
"extra": "mean: 3.147124293600611 usec\nrounds: 90140" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[3]", | ||
"value": 321095.51656039385, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.448009603653861e-7", | ||
"extra": "mean: 3.1143380970002212 usec\nrounds: 118633" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[5]", | ||
"value": 319048.026164494, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.84868640013136e-7", | ||
"extra": "mean: 3.1343243586920755 usec\nrounds: 101748" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[7]", | ||
"value": 317680.67244610447, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.054337282692768e-7", | ||
"extra": "mean: 3.1478150442710775 usec\nrounds: 82248" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[0]", | ||
"value": 317851.4760900011, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.261634770531967e-7", | ||
"extra": "mean: 3.146123504919151 usec\nrounds: 10668" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[1]", | ||
"value": 318929.79728043225, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.432858437708288e-7", | ||
"extra": "mean: 3.1354862685367357 usec\nrounds: 103894" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[3]", | ||
"value": 319733.8227223331, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.443785755921218e-7", | ||
"extra": "mean: 3.127601551458106 usec\nrounds: 110049" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[5]", | ||
"value": 318997.1672895246, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.42114017893541e-7", | ||
"extra": "mean: 3.134824075388705 usec\nrounds: 111965" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[7]", | ||
"value": 318181.4410755154, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.732726761978282e-7", | ||
"extra": "mean: 3.142860867748303 usec\nrounds: 112000" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[0]", | ||
"value": 320689.1290370727, | ||
"unit": "iter/sec", | ||
"range": "stddev: 4.862537552854358e-7", | ||
"extra": "mean: 3.1182846858659707 usec\nrounds: 13241" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[1]", | ||
"value": 315370.7695892517, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.379757779661631e-7", | ||
"extra": "mean: 3.1708709126797956 usec\nrounds: 114606" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[3]", | ||
"value": 319333.601590673, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.119457621012089e-7", | ||
"extra": "mean: 3.1315213777027333 usec\nrounds: 46209" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[5]", | ||
"value": 316119.4259362813, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.349541826140988e-7", | ||
"extra": "mean: 3.1633614322758055 usec\nrounds: 101469" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[7]", | ||
"value": 317916.134609802, | ||
"unit": "iter/sec", | ||
"range": "stddev: 4.894558541025157e-7", | ||
"extra": "mean: 3.145483639033802 usec\nrounds: 106990" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[0]", | ||
"value": 281427.18067236635, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0000014154849577216985", | ||
"extra": "mean: 3.5533170520731834 usec\nrounds: 113" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[1]", | ||
"value": 315767.78355320287, | ||
"unit": "iter/sec", | ||
"range": "stddev: 4.94695600821842e-7", | ||
"extra": "mean: 3.1668841854207477 usec\nrounds: 106639" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[3]", | ||
"value": 316273.60299627244, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.406507776518168e-7", | ||
"extra": "mean: 3.1618193568047657 usec\nrounds: 115295" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[5]", | ||
"value": 316495.69345157925, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.09155568009717e-7", | ||
"extra": "mean: 3.15960065394378 usec\nrounds: 91476" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[7]", | ||
"value": 316212.23785237025, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.333259759744657e-7", | ||
"extra": "mean: 3.1624329494384376 usec\nrounds: 111523" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[0]", | ||
"value": 277863.26991597726, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0000019116290703469356", | ||
"extra": "mean: 3.5988923627883196 usec\nrounds: 224" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[1]", | ||
"value": 310405.0498870227, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.36941371281721e-7", | ||
"extra": "mean: 3.2215970724830907 usec\nrounds: 94131" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[3]", | ||
"value": 311442.13224401826, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.960208981232667e-7", | ||
"extra": "mean: 3.2108693605285534 usec\nrounds: 107947" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[5]", | ||
"value": 307682.31356502837, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.386738583329573e-7", | ||
"extra": "mean: 3.2501055663982807 usec\nrounds: 106007" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[7]", | ||
"value": 308391.59147369023, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.197325505549732e-7", | ||
"extra": "mean: 3.242630563373557 usec\nrounds: 109421" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/trace/test_benchmark_trace.py::test_simple_start_span", | ||
"value": 81646.1674483301, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000001268097487872833", | ||
"extra": "mean: 12.247972332967759 usec\nrounds: 9928" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/trace/test_benchmark_trace.py::test_simple_start_as_current_span", | ||
"value": 54627.48367089153, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000001640082262381503", | ||
"extra": "mean: 18.305803833553732 usec\nrounds: 18644" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
|