Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PT FE]: extend logical operations support #19981

Merged
merged 3 commits into from
Sep 22, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 38 additions & 4 deletions src/frontends/pytorch/src/op/logical.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,9 @@

#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/logical_and.hpp"
#include "openvino/op/logical_not.hpp"
#include "openvino/op/logical_or.hpp"
#include "openvino/op/logical_xor.hpp"
#include "utils.hpp"

namespace ov {
Expand All @@ -15,25 +17,57 @@ namespace op {
using namespace ov::op;

OutputVector translate_or(const NodeContext& context) {
num_inputs_check(context, 2, 2);
num_inputs_check(context, 2, 3);
auto x = context.get_input(0);
auto y = context.get_input(1);
x = context.mark_node(std::make_shared<v0::Convert>(x, element::boolean));
y = context.mark_node(std::make_shared<v0::Convert>(y, element::boolean));
// TODO: use bitwise op here when will be supported by openvino
auto or_node = context.mark_node(std::make_shared<v1::LogicalOr>(x, y));
if (!context.input_is_none(2)) {
context.mutate_input(2, or_node);
}
return {or_node};
};

OutputVector translate_and(const NodeContext& context) {
num_inputs_check(context, 2, 2);
num_inputs_check(context, 2, 3);
auto x = context.get_input(0);
auto y = context.get_input(1);
x = context.mark_node(std::make_shared<v0::Convert>(x, element::boolean));
y = context.mark_node(std::make_shared<v0::Convert>(y, element::boolean));
// TODO: use bitwise op here when will be supported by openvino
auto or_node = context.mark_node(std::make_shared<v1::LogicalAnd>(x, y));
return {or_node};
auto and_node = context.mark_node(std::make_shared<v1::LogicalAnd>(x, y));
if (!context.input_is_none(2)) {
context.mutate_input(2, and_node);
}
return {and_node};
};

OutputVector translate_not(const NodeContext& context) {
num_inputs_check(context, 1, 2);
auto x = context.get_input(0);
x = context.mark_node(std::make_shared<v0::Convert>(x, element::boolean));
// TODO: use bitwise op here when will be supported by openvino
auto not_node = context.mark_node(std::make_shared<v1::LogicalNot>(x));
if (!context.input_is_none(1)) {
context.mutate_input(1, not_node);
}
return {not_node};
};

OutputVector translate_xor(const NodeContext& context) {
num_inputs_check(context, 2, 3);
auto x = context.get_input(0);
auto y = context.get_input(1);
x = context.mark_node(std::make_shared<v0::Convert>(x, element::boolean));
y = context.mark_node(std::make_shared<v0::Convert>(y, element::boolean));
// TODO: use bitwise op here when will be supported by openvino
auto xor_node = context.mark_node(std::make_shared<v1::LogicalXor>(x, y));
if (!context.input_is_none(2)) {
context.mutate_input(2, xor_node);
}
return {xor_node};
};

} // namespace op
Expand Down
6 changes: 6 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@ OP_CONVERTER(translate_new_zeros);
OP_CONVERTER(translate_nms);
OP_CONVERTER(translate_nonzero);
OP_CONVERTER(translate_norm);
OP_CONVERTER(translate_not);
OP_CONVERTER(translate_numel);
OP_CONVERTER(translate_one_hot);
OP_CONVERTER(translate_ones);
Expand Down Expand Up @@ -185,6 +186,7 @@ OP_CONVERTER(translate_quantized_cat);
OP_CONVERTER(translate_quantized_convnd);
OP_CONVERTER(translate_quantized_convnd_relu);
OP_CONVERTER(translate_quantized_linear);
OP_CONVERTER(translate_xor);
// Torch FX Translations
OP_CONVERTER(translate_arange_fx);
OP_CONVERTER(translate_batch_norm_fx);
Expand Down Expand Up @@ -340,6 +342,10 @@ const std::map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::linspace", op::translate_linspace},
{"aten::log", op::translate_log},
{"aten::log_", op::inplace_op<op::translate_log>},
{"aten::logical_and", op::translate_and},
{"aten::logical_or", op::translate_or},
{"aten::logical_not", op::translate_not},
{"aten::logical_xor", op::translate_xor},
{"aten::log_softmax", op::translate_log_softmax},
{"aten::log2", op::translate_log2},
{"aten::log2_", op::inplace_op<op::translate_log2>},
Expand Down
60 changes: 60 additions & 0 deletions tests/layer_tests/pytorch_tests/test_logical_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import numpy as np
import pytest
from pytorch_layer_test_class import PytorchLayerTest

class TestLogicalOp(PytorchLayerTest):

def _prepare_input(self, out, unary):
x = np.random.randint(0, 2, (1, 10)).astype(bool)
if unary:
return (x, ) if not out else (x, np.zeros_like(x).astype(bool))
y = np.random.randint(0, 2, (1, 10)).astype(bool)
if not out:
return x, y
return x, y, np.zeros_like(x).astype(bool)

def create_model(self, op_name, out):
import torch

ops = {
"and": torch.logical_and,
"or": torch.logical_or,
"xor": torch.logical_xor,
"not": torch.logical_not
}
op = ops[op_name]
class aten_logical(torch.nn.Module):

def __init__(self, op, out) -> None:
super().__init__()
self.op = op
if op == torch.logical_not:
self.forward = self.forward_not
if out:
self.forward = self.forward_out if not op == torch.logical_not else self.forward_not_out

def forward(self, tensor_a, tensor_b):
return self.op(tensor_a, tensor_b)


def forward_out(self, tensor_a, tensor_b, out):
return self.op(tensor_a, tensor_b, out=out), out

def forward_not(self, tensor_a):
return self.op(tensor_a)

def forward_not_out(self, tensor_a, out):
return self.op(tensor_a, out=out), out

ref_net = None

return aten_logical(op, out), ref_net, f"aten::logical_{op_name}"


@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("op_type", ["and", "or", "not", "xor"])
@pytest.mark.parametrize("out", [True, False])
def test_and_tensor(self, op_type, out, ie_device, precision, ir_version):
self._test(*self.create_model(op_type, out),
ie_device, precision, ir_version, kwargs_to_prepare_input={"out": out, "unary": op_type == "not"})