Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support aten::bucketize for pytorch models #23328 #23527

Merged
merged 5 commits into from
Mar 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions src/frontends/pytorch/src/op/bucketize.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
// Copyright (C) 2018-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "openvino/op/bucketize.hpp"

#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/concat.hpp"
#include "openvino/op/convert_like.hpp"
#include "openvino/op/logical_or.hpp"
#include "openvino/op/multiply.hpp"
#include "utils.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_bucketize(const NodeContext& context) {
num_inputs_check(context, 2, 5);
auto input = context.get_input(0);
auto boundaries = context.get_input(1);

element::Type output_type = ov::element::i64;
if (!context.input_is_none(2) && context.const_input<bool>(2)) {
output_type = ov::element::i32;
}

bool with_right_bound = true;
if (!context.input_is_none(3)) {
with_right_bound = !context.const_input<bool>(3);
}

auto bucketize =
context.mark_node(std::make_shared<v3::Bucketize>(input, boundaries, output_type, with_right_bound));

if (!context.input_is_none(4)) {
context.mutate_input(4, bucketize);
}

return {bucketize};
};

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ OP_CONVERTER(translate_bitwise_and);
OP_CONVERTER(translate_bitwise_not);
OP_CONVERTER(translate_bitwise_or);
OP_CONVERTER(translate_bitwise_xor);
OP_CONVERTER(translate_bucketize);
OP_CONVERTER(translate_cat);
OP_CONVERTER(translate_cdist);
OP_CONVERTER(translate_celu);
Expand Down Expand Up @@ -368,6 +369,7 @@ const std::map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::Bool", op::translate_bool},
// aten::broadcast_tensors - Supported in limited set of patterns
{"aten::broadcast_to", op::translate_expand},
{"aten::bucketize", op::translate_bucketize},
{"aten::cat", op::translate_cat},
{"aten::cdist", op::translate_cdist},
{"aten::ceil", op::optional_out<op::translate_1to1_match_1_inputs<opset10::Ceiling>, 1>},
Expand Down
53 changes: 53 additions & 0 deletions tests/layer_tests/pytorch_tests/test_bucketize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# Copyright (C) 2018-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import numpy as np
import pytest
import torch

from pytorch_layer_test_class import PytorchLayerTest


class TestBucketize(PytorchLayerTest):

def _prepare_input(self, input_shape, boundaries_range, input_dtype, boundaries_dtype):
return (
np.random.randn(*input_shape).astype(input_dtype),
np.arange(*boundaries_range).astype(boundaries_dtype))

def create_model(self, out_int32, right, is_out):
class aten_bucketize(torch.nn.Module):

def __init__(self, out_int32, right, is_out) -> None:
super().__init__()
self.out_int32 = out_int32
self.right = right
self.is_out = is_out

def forward(self, input, boundaries):
if self.is_out:
output_dtype = torch.int32 if self.out_int32 else torch.int64
output = torch.zeros_like(input, dtype=output_dtype)
torch.bucketize(input, boundaries, out_int32=self.out_int32, right=self.right, out=output)
return output
else:
return torch.bucketize(input, boundaries, out_int32=self.out_int32, right=self.right)

ref_net = None

return aten_bucketize(out_int32, right, is_out), ref_net, "aten::bucketize"

@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("out_int32", [True, False])
@pytest.mark.parametrize("right", [True, False])
@pytest.mark.parametrize("is_out", [True, False])
@pytest.mark.parametrize("input_shape", [[1, ], [2, 1], [2, 2, 1]])
@pytest.mark.parametrize("input_dtype", ["float32", "int32"])
@pytest.mark.parametrize("boundaries_range", [[1, 10], (100, 200)])
@pytest.mark.parametrize("boundaries_dtype", ["float32", "int32"])
def test_bucketize(self, input_shape, boundaries_range, input_dtype, boundaries_dtype, out_int32, right, is_out, ie_device, precision, ir_version):
self._test(*self.create_model(out_int32, right, is_out), ie_device, precision, ir_version, kwargs_to_prepare_input={
"input_shape": input_shape, "input_dtype": input_dtype,
"boundaries_range": boundaries_range, "boundaries_dtype": boundaries_dtype,
})
Loading