-
Notifications
You must be signed in to change notification settings - Fork 13.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 #109411
Comments
cc @LeSeulArtichaut , author of #108651 Note that this is about the no_std panic handler, not about the #![feature(target_feature_11)]
use core::panic::PanicInfo;
#[target_feature(enable = "avx2")]
fn panic(_info: &PanicInfo) {
loop {}
}
fn main() {
std::panic::set_hook(Box::new(panic));
} gives
|
ugh we really need a way to make sure that every single "this is called by rust" function gets a check... |
Yeah sadly we do need to make sure, not just for the constructs that we have now but also it needs to be kept in mind for the future constructs we add or stabilize. A lot thankfully goes through either the trait system (operators or the GlobalAlloc trait used by The best list of lang items I could find was in the unstable book, so that would be a great start for such an exhaustive search. Thankfully most of them are unstable, but still it needs to be addressed for each of them before stabilization (if that is a target). |
WG-prioritization assigning priority (Zulip discussion). @rustbot label -I-prioritize +P-medium |
@rustbot label +requires-nightly |
There is also another table of lang items in the source code, here. |
Prevent using `#[target_feature]` on lang item functions Fixes rust-lang/rust#109411 and also prevents from using `#[target_feature]` on other `fn` lang items to mitigate the concerns from rust-lang/rust#109411 (comment).
Prevent using `#[target_feature]` on lang item functions Fixes rust-lang/rust#109411 and also prevents from using `#[target_feature]` on other `fn` lang items to mitigate the concerns from rust-lang/rust#109411 (comment).
Prevent using `#[target_feature]` on lang item functions Fixes rust-lang/rust#109411 and also prevents from using `#[target_feature]` on other `fn` lang items to mitigate the concerns from rust-lang/rust#109411 (comment).
Stabilize target_feature_11 # Stabilization report This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks `@LeSeulArtichaut` and `@calebzulawski!` ## Summary Allows for safe functions to be marked with `#[target_feature]` attributes. Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits. However, calling them from other `#[target_feature]` functions with a superset of features is safe. ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() { // Calling `avx2` here is unsafe, as we must ensure // that AVX is available first. unsafe { avx2(); } } #[target_feature(enable = "avx2")] fn bar() { // Calling `avx2` here is safe. avx2(); } ``` Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe: ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() -> fn() { // Converting `avx2` to fn() is a compilation error here. avx2 } #[target_feature(enable = "avx2")] fn bar() -> fn() { // `avx2` coerces to fn() here avx2 } ``` See the section "Closures" below for justification of this behaviour. ## Test cases Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature). ## Edge cases ### Closures * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631) Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits. ```rust #[target_feature(enable = "avx2")] fn qux() { let my_closure = || avx2(); // this call to `avx2` is safe let f: fn() = my_closure; } ``` This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute. This is usually ensured because target features are assumed to never disappear, and: - on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call. - on any safe call, this is guaranteed recursively by the caller. If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again). **Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” . This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope". * [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836) Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility. ### ABI concerns * [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558) The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur. ### Special functions The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods. This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs: * [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645) * [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646) * [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411) * [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910) ## Documentation * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181) --- cc tracking issue rust-lang#69098 cc `@workingjubilee` cc `@RalfJung` r? `@rust-lang/lang`
Stabilize target_feature_11 # Stabilization report This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks ``@LeSeulArtichaut`` and ``@calebzulawski!`` ## Summary Allows for safe functions to be marked with `#[target_feature]` attributes. Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits. However, calling them from other `#[target_feature]` functions with a superset of features is safe. ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() { // Calling `avx2` here is unsafe, as we must ensure // that AVX is available first. unsafe { avx2(); } } #[target_feature(enable = "avx2")] fn bar() { // Calling `avx2` here is safe. avx2(); } ``` Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe: ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() -> fn() { // Converting `avx2` to fn() is a compilation error here. avx2 } #[target_feature(enable = "avx2")] fn bar() -> fn() { // `avx2` coerces to fn() here avx2 } ``` See the section "Closures" below for justification of this behaviour. ## Test cases Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature). ## Edge cases ### Closures * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631) Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits. ```rust #[target_feature(enable = "avx2")] fn qux() { let my_closure = || avx2(); // this call to `avx2` is safe let f: fn() = my_closure; } ``` This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute. This is usually ensured because target features are assumed to never disappear, and: - on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call. - on any safe call, this is guaranteed recursively by the caller. If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again). **Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” . This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope". * [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836) Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility. ### ABI concerns * [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558) The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur. ### Special functions The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods. This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs: * [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645) * [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646) * [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411) * [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910) ## Documentation * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181) --- cc tracking issue rust-lang#69098 cc ``@workingjubilee`` cc ``@RalfJung`` r? ``@rust-lang/lang``
Stabilize target_feature_11 # Stabilization report This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!``` ## Summary Allows for safe functions to be marked with `#[target_feature]` attributes. Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits. However, calling them from other `#[target_feature]` functions with a superset of features is safe. ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() { // Calling `avx2` here is unsafe, as we must ensure // that AVX is available first. unsafe { avx2(); } } #[target_feature(enable = "avx2")] fn bar() { // Calling `avx2` here is safe. avx2(); } ``` Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe: ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() -> fn() { // Converting `avx2` to fn() is a compilation error here. avx2 } #[target_feature(enable = "avx2")] fn bar() -> fn() { // `avx2` coerces to fn() here avx2 } ``` See the section "Closures" below for justification of this behaviour. ## Test cases Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature). ## Edge cases ### Closures * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631) Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits. ```rust #[target_feature(enable = "avx2")] fn qux() { let my_closure = || avx2(); // this call to `avx2` is safe let f: fn() = my_closure; } ``` This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute. This is usually ensured because target features are assumed to never disappear, and: - on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call. - on any safe call, this is guaranteed recursively by the caller. If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again). **Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” . This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope". * [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836) Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility. ### ABI concerns * [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558) The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur. ### Special functions The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods. This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs: * [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645) * [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646) * [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411) * [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910) ## Documentation * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181) --- cc tracking issue rust-lang#69098 cc ```@workingjubilee``` cc ```@RalfJung``` r? ```@rust-lang/lang```
Rollup merge of rust-lang#134090 - veluca93:stable-tf11, r=oli-obk Stabilize target_feature_11 # Stabilization report This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!``` ## Summary Allows for safe functions to be marked with `#[target_feature]` attributes. Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits. However, calling them from other `#[target_feature]` functions with a superset of features is safe. ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() { // Calling `avx2` here is unsafe, as we must ensure // that AVX is available first. unsafe { avx2(); } } #[target_feature(enable = "avx2")] fn bar() { // Calling `avx2` here is safe. avx2(); } ``` Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe: ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() -> fn() { // Converting `avx2` to fn() is a compilation error here. avx2 } #[target_feature(enable = "avx2")] fn bar() -> fn() { // `avx2` coerces to fn() here avx2 } ``` See the section "Closures" below for justification of this behaviour. ## Test cases Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature). ## Edge cases ### Closures * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631) Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits. ```rust #[target_feature(enable = "avx2")] fn qux() { let my_closure = || avx2(); // this call to `avx2` is safe let f: fn() = my_closure; } ``` This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute. This is usually ensured because target features are assumed to never disappear, and: - on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call. - on any safe call, this is guaranteed recursively by the caller. If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again). **Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” . This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope". * [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836) Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility. ### ABI concerns * [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558) The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur. ### Special functions The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods. This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs: * [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645) * [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646) * [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411) * [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910) ## Documentation * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181) --- cc tracking issue rust-lang#69098 cc ```@workingjubilee``` cc ```@RalfJung``` r? ```@rust-lang/lang```
Stabilize target_feature_11 # Stabilization report This is an updated version of rust-lang/rust#116114, which is itself a redo of rust-lang/rust#99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!``` ## Summary Allows for safe functions to be marked with `#[target_feature]` attributes. Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits. However, calling them from other `#[target_feature]` functions with a superset of features is safe. ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() { // Calling `avx2` here is unsafe, as we must ensure // that AVX is available first. unsafe { avx2(); } } #[target_feature(enable = "avx2")] fn bar() { // Calling `avx2` here is safe. avx2(); } ``` Moreover, once rust-lang/rust#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe: ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() -> fn() { // Converting `avx2` to fn() is a compilation error here. avx2 } #[target_feature(enable = "avx2")] fn bar() -> fn() { // `avx2` coerces to fn() here avx2 } ``` See the section "Closures" below for justification of this behaviour. ## Test cases Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature). ## Edge cases ### Closures * [target-feature 1.1: should closures inherit target-feature annotations? #73631](rust-lang/rust#73631) Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits. ```rust #[target_feature(enable = "avx2")] fn qux() { let my_closure = || avx2(); // this call to `avx2` is safe let f: fn() = my_closure; } ``` This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute. This is usually ensured because target features are assumed to never disappear, and: - on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call. - on any safe call, this is guaranteed recursively by the caller. If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again). **Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in #73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” . This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope". * [Fix #[inline(always)] on closures with target feature 1.1 #111836](rust-lang/rust#111836) Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility. ### ABI concerns * [The extern "C" ABI of SIMD vector types depends on target features #116558](rust-lang/rust#116558) The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (#133102, #132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur. ### Special functions The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods. This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs: * [`#[target_feature]` is allowed on `main` #108645](rust-lang/rust#108645) * [`#[target_feature]` is allowed on default implementations #108646](rust-lang/rust#108646) * [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 #109411](rust-lang/rust#109411) * [Prevent using `#[target_feature]` on lang item functions #115910](rust-lang/rust#115910) ## Documentation * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181) --- cc tracking issue rust-lang/rust#69098 cc ```@workingjubilee``` cc ```@RalfJung``` r? ```@rust-lang/lang```
Stabilize target_feature_11 # Stabilization report This is an updated version of rust-lang/rust#116114, which is itself a redo of rust-lang/rust#99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!``` ## Summary Allows for safe functions to be marked with `#[target_feature]` attributes. Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits. However, calling them from other `#[target_feature]` functions with a superset of features is safe. ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() { // Calling `avx2` here is unsafe, as we must ensure // that AVX is available first. unsafe { avx2(); } } #[target_feature(enable = "avx2")] fn bar() { // Calling `avx2` here is safe. avx2(); } ``` Moreover, once rust-lang/rust#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe: ```rust // Demonstration function #[target_feature(enable = "avx2")] fn avx2() {} fn foo() -> fn() { // Converting `avx2` to fn() is a compilation error here. avx2 } #[target_feature(enable = "avx2")] fn bar() -> fn() { // `avx2` coerces to fn() here avx2 } ``` See the section "Closures" below for justification of this behaviour. ## Test cases Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature). ## Edge cases ### Closures * [target-feature 1.1: should closures inherit target-feature annotations? #73631](rust-lang/rust#73631) Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits. ```rust #[target_feature(enable = "avx2")] fn qux() { let my_closure = || avx2(); // this call to `avx2` is safe let f: fn() = my_closure; } ``` This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute. This is usually ensured because target features are assumed to never disappear, and: - on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call. - on any safe call, this is guaranteed recursively by the caller. If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again). **Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in #73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” . This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope". * [Fix #[inline(always)] on closures with target feature 1.1 #111836](rust-lang/rust#111836) Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility. ### ABI concerns * [The extern "C" ABI of SIMD vector types depends on target features #116558](rust-lang/rust#116558) The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (#133102, #132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur. ### Special functions The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods. This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs: * [`#[target_feature]` is allowed on `main` #108645](rust-lang/rust#108645) * [`#[target_feature]` is allowed on default implementations #108646](rust-lang/rust#108646) * [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 #109411](rust-lang/rust#109411) * [Prevent using `#[target_feature]` on lang item functions #115910](rust-lang/rust#115910) ## Documentation * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181) --- cc tracking issue rust-lang/rust#69098 cc ```@workingjubilee``` cc ```@RalfJung``` r? ```@rust-lang/lang```
This works (but it shouldn't):
similar to #108645 , cc #69098 (tracking issue)
@rustbot label T-lang T-compiler C-bug I-unsound F-target_feature_11
The text was updated successfully, but these errors were encountered: