Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixture for Augur tests #406

Merged
merged 3 commits into from
Oct 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file removed tests/tools/sc_sim.h5ad
Binary file not shown.
120 changes: 57 additions & 63 deletions tests/tools/test_augur.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,90 +16,87 @@ class TestAugur:
ag_lrc = pt.tl.Augur("logistic_regression_classifier", Params(random_state=42))
ag_rfr = pt.tl.Augur("random_forest_regressor", Params(random_state=42))

def test_load(self):
@pytest.fixture
def adata(self):
adata = pt.dt.sc_sim_augur()
adata = sc.pp.subsample(adata, n_obs=200, copy=True, random_state=10)

return adata

def test_load(self, adata):
"""Test if load function creates anndata objects."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
ag = pt.tl.Augur(estimator="random_forest_classifier")

loaded_adata = ag.load(sc_sim_adata)
loaded_df = ag.load(sc_sim_adata.to_df(), meta=sc_sim_adata.obs, cell_type_col="cell_type", label_col="label")
loaded_adata = ag.load(adata)
loaded_df = ag.load(adata.to_df(), meta=adata.obs, cell_type_col="cell_type", label_col="label")

assert loaded_adata.obs["y_"].equals(loaded_df.obs["y_"]) is True
assert sc_sim_adata.to_df().equals(loaded_adata.to_df()) is True and sc_sim_adata.to_df().equals(
loaded_df.to_df()
)
assert adata.to_df().equals(loaded_adata.to_df()) is True and adata.to_df().equals(loaded_df.to_df())

def test_random_forest_classifier(self):
def test_random_forest_classifier(self, adata):
"""Tests random forest for auc calculation."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_rfc.load(sc_sim_adata)
sc.pp.highly_variable_genes(sc_sim_adata)
adata, results = self.ag_rfc.predict(
sc_sim_adata, n_threads=4, n_subsamples=3, random_state=42, select_variance_features=False
adata = self.ag_rfc.load(adata)
sc.pp.highly_variable_genes(adata)
h_adata, results = self.ag_rfc.predict(
adata, n_threads=4, n_subsamples=3, random_state=42, select_variance_features=False
)

assert results["CellTypeA"][2]["subsample_idx"] == 2
assert "augur_score" in adata.obs.columns
assert "augur_score" in h_adata.obs.columns
assert np.allclose(results["summary_metrics"].loc["mean_augur_score"].tolist(), [0.634920, 0.933484, 0.902494])
assert "feature_importances" in results.keys()
assert len(set(results["summary_metrics"]["CellTypeA"])) == len(results["summary_metrics"]["CellTypeA"]) - 1

def test_logistic_regression_classifier(self):
def test_logistic_regression_classifier(self, adata):
"""Tests logistic classifier for auc calculation."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_rfc.load(sc_sim_adata)
sc.pp.highly_variable_genes(sc_sim_adata)
adata, results = self.ag_lrc.predict(
sc_sim_adata, n_threads=4, n_subsamples=3, random_state=42, select_variance_features=False
adata = self.ag_rfc.load(adata)
sc.pp.highly_variable_genes(adata)
h_adata, results = self.ag_lrc.predict(
adata, n_threads=4, n_subsamples=3, random_state=42, select_variance_features=False
)

assert "augur_score" in adata.obs.columns
assert "augur_score" in h_adata.obs.columns
assert np.allclose(results["summary_metrics"].loc["mean_augur_score"].tolist(), [0.691232, 0.955404, 0.972789])
assert "feature_importances" in results.keys()

def test_random_forest_regressor(self):
def test_random_forest_regressor(self, adata):
"""Tests random forest regressor for ccc calculation."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_rfc.load(sc_sim_adata)
sc.pp.highly_variable_genes(sc_sim_adata)
adata = self.ag_rfc.load(adata)
sc.pp.highly_variable_genes(adata)

with pytest.raises(ValueError):
self.ag_rfr.predict(sc_sim_adata, n_threads=4, n_subsamples=3, random_state=42)
self.ag_rfr.predict(adata, n_threads=4, n_subsamples=3, random_state=42)

def test_classifier(self):
def test_classifier(self, adata):
"""Test run cross validation with classifier."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_rfc.load(sc_sim_adata)
sc.pp.highly_variable_genes(sc_sim_adata)
adata = sc.pp.subsample(sc_sim_adata, n_obs=100, random_state=42, copy=True)
adata = self.ag_rfc.load(adata)
sc.pp.highly_variable_genes(adata)
adata_subsampled = sc.pp.subsample(adata, n_obs=100, random_state=42, copy=True)

cv = self.ag_rfc.run_cross_validation(adata, subsample_idx=1, folds=3, random_state=42, zero_division=0)
cv = self.ag_rfc.run_cross_validation(
adata_subsampled, subsample_idx=1, folds=3, random_state=42, zero_division=0
)
auc = 0.786412
assert any([isclose(cv["mean_auc"], auc, abs_tol=10**-3)])

sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_lrc.load(sc_sim_adata)
sc.pp.highly_variable_genes(sc_sim_adata)
cv = self.ag_lrc.run_cross_validation(sc_sim_adata, subsample_idx=1, folds=3, random_state=42, zero_division=0)
cv = self.ag_lrc.run_cross_validation(adata, subsample_idx=1, folds=3, random_state=42, zero_division=0)
auc = 0.978673
assert any([isclose(cv["mean_auc"], auc, abs_tol=10**-3)])

def test_regressor(self):
def test_regressor(self, adata):
"""Test run cross validation with regressor."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_rfc.load(sc_sim_adata)
cv = self.ag_rfr.run_cross_validation(sc_sim_adata, subsample_idx=1, folds=3, random_state=42, zero_division=0)
adata = self.ag_rfc.load(adata)
cv = self.ag_rfr.run_cross_validation(adata, subsample_idx=1, folds=3, random_state=42, zero_division=0)
ccc = 0.168800
r2 = 0.149887
assert any([isclose(cv["mean_ccc"], ccc, abs_tol=10**-5), isclose(cv["mean_r2"], r2, abs_tol=10**-5)])

def test_subsample(self):
def test_subsample(self, adata):
"""Test default, permute and velocity subsampling process."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_rfc.load(sc_sim_adata)
sc.pp.highly_variable_genes(sc_sim_adata)
adata = self.ag_rfc.load(adata)
sc.pp.highly_variable_genes(adata)
categorical_subsample = self.ag_rfc.draw_subsample(
adata=sc_sim_adata,
adata=adata,
augur_mode="default",
subsample_size=20,
feature_perc=0.3,
Expand All @@ -109,7 +106,7 @@ def test_subsample(self):
assert len(categorical_subsample.obs_names) == 40

non_categorical_subsample = self.ag_rfc.draw_subsample(
adata=sc_sim_adata,
adata=adata,
augur_mode="default",
subsample_size=20,
feature_perc=0.3,
Expand All @@ -119,17 +116,17 @@ def test_subsample(self):
assert len(non_categorical_subsample.obs_names) == 20

permut_subsample = self.ag_rfc.draw_subsample(
adata=sc_sim_adata,
adata=adata,
augur_mode="permute",
subsample_size=20,
feature_perc=0.3,
categorical=True,
random_state=42,
)
assert (sc_sim_adata.obs.loc[permut_subsample.obs.index, "y_"] != permut_subsample.obs["y_"]).any()
assert (adata.obs.loc[permut_subsample.obs.index, "y_"] != permut_subsample.obs["y_"]).any()

velocity_subsample = self.ag_rfc.draw_subsample(
adata=sc_sim_adata,
adata=adata,
augur_mode="velocity",
subsample_size=20,
feature_perc=0.3,
Expand All @@ -142,13 +139,12 @@ def test_multiclass(self):
"""Test multiclass evaluation."""
pass

def test_select_variance(self):
def test_select_variance(self, adata):
"""Test select variance implementation."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")
sc_sim_adata = self.ag_rfc.load(sc_sim_adata)
sc.pp.highly_variable_genes(sc_sim_adata)
adata = sc_sim_adata[sc_sim_adata.obs["cell_type"] == "CellTypeA"]
ad = self.ag_rfc.select_variance(adata, var_quantile=0.5, span=0.3, filter_negative_residuals=False)
adata = self.ag_rfc.load(adata)
sc.pp.highly_variable_genes(adata)
adata_cell_type = adata[adata.obs["cell_type"] == "CellTypeA"]
ad = self.ag_rfc.select_variance(adata_cell_type, var_quantile=0.5, span=0.3, filter_negative_residuals=False)

assert 3672 == len(ad.var.index[ad.var["highly_variable"]])

Expand All @@ -170,17 +166,15 @@ def test_params(self):
self.ag_rfr.create_estimator("random_forest_regressor", Params(unvalid=10))

@pytest.mark.skip("Computationally expensive")
def test_differential_prioritization(self):
def test_differential_prioritization(self, adata):
"""Test differential prioritization run."""
sc_sim_adata = sc.read_h5ad(f"{CWD}/sc_sim.h5ad")

ag = pt.tl.Augur("random_forest_classifier", Params(random_state=42))
ag.load(sc_sim_adata)
ag.load(adata)

adata, results1 = ag.predict(sc_sim_adata, n_threads=4, n_subsamples=3, random_state=2)
adata, results2 = ag.predict(sc_sim_adata, n_threads=4, n_subsamples=3, random_state=42)
adata, results1 = ag.predict(adata, n_threads=4, n_subsamples=3, random_state=2)
adata, results2 = ag.predict(adata, n_threads=4, n_subsamples=3, random_state=42)

a, permut1 = ag.predict(sc_sim_adata, augur_mode="permute", n_threads=4, n_subsamples=100, random_state=2)
a, permut2 = ag.predict(sc_sim_adata, augur_mode="permute", n_threads=4, n_subsamples=100, random_state=42)
a, permut1 = ag.predict(adata, augur_mode="permute", n_threads=4, n_subsamples=100, random_state=2)
a, permut2 = ag.predict(adata, augur_mode="permute", n_threads=4, n_subsamples=100, random_state=42)
delta = ag.predict_differential_prioritization(results1, results2, permut1, permut2)
assert not np.isnan(delta["z"]).any()