Code for the paper "RLx2: Training a Sparse Deep Reinforcement Learning Model from Scratch".
The DST Scheduler is inplemented based on an open-source PyTorch version of RigL codebase. We implement the RL algorithms based on the official codebase of TD3 and an open-source PyTorch implementation of SAC.
We use MuJoCo 2.0.0 from OpenAI gym for our experiments.
├── DST //Modules for topology evolution
│ ├── __init__.py
│ ├── DST_Scheduler.py //Scheduler for topology evolution
│ └── utils.py //Other modules used
├── RLx2_SAC
│ ├── train.py //Train with SAC
│ ├── SAC.py //SAC with n-step
│ └── modules_SAC.py //Neural Networks
├── RLx2_TD3
│ ├── train.py //Train with TD3
│ ├── TD3.py //TD3 with n-step
│ └── modules_TD3.py //Neural Networks
├── conda_env.yml
└── README.md
create conda environment:
conda env create -f conda_env.yml
conda activate RLx2
To run RLx2 in each single environment with TD3:
cd RLx2_TD3
python train.py --env <environment_name> --actor_sparsity <actor_sparsity> --critic_sparsity <critic_sparsity> --nstep 3 --delay_nstep 300000 --use_dynamic_buffer
To run RLx2 in each single environment with SAC:
cd RLx2_SAC
python train.py --env <environment_name> --actor_sparsity <actor_sparsity> --critic_sparsity <critic_sparsity> --nstep 3 --delay_nstep 300000 --use_dynamic_buffer
@inproceedings{
tan2023rlx,
title={{RL}x2: Training a Sparse Deep Reinforcement Learning Model from Scratch},
author={Yiqin Tan and Pihe Hu and Ling Pan and Jiatai Huang and Longbo Huang},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=DJEEqoAq7to}
}